Simplified model mitochondrion multilayer system as a finite and periodic

Authors

  • Francis Segovia-Chaves Universidad Surcolombiana
  • Daniel Suescún Díaz Universidad Surcolombiana
  • Emilse Cabrera Universidad Surcolombiana

Keywords:

Maxwell equations, mitochondria, reflectance, transmittance

Abstract

In this paper we propose a simplified mitochondrion model as a system of finite periodic multilayers. Using electromagnetic theory based on the method of transfer matrix, analytically obtain the relations that determine the reflectance and transmittance versus characteristic parameters of the system under consideration. Numerically we obtain reflectance curves (R) and transmittance (T) depending on the wavelength of incident electromagnetic field. We also determine the dependence of R and T spectra to the number of bilayers N and angle 0 incident. It shows a shift of the gap at short wavelengths as shown 0 increases, the results agree with those reported in literature.

Article Metrics

 Abstract: 393  HTML (Español (España)): 343  PDF (Español (España)): 250 

Author Biographies

Francis Segovia-Chaves, Universidad Surcolombiana

Profesor de la Facultad de Ciencias Exactas y Naturales, programa de Física. Grupo de Física Teórica, correo electrónico: francis.segoviac@gmail.com, francis.segovia@usco.edu.co

Daniel Suescún Díaz, Universidad Surcolombiana

Profesor de la Facultad de Ciencias Exactas y Naturales, programa de Física. Grupo de Física Teórica, correo electrónico: danielsuescun@usco.edu.co

Emilse Cabrera, Universidad Surcolombiana

Estudiante programa de Física, integrante del semillero de física matemática. Correo electrónico: emili9613@hotmail.com

References

L.P. Gartner y J. L. Hiatt. Atlas color de histología. Médica Panamericana, Colombia, 2003.

D. Margineantu, R. A. Capaldi, and A. H. Marcus. Dynamics of the Mitochondrial Reticulum in LiveCells using Fourier Imaging Correlation Spectroscopy and Digital Video Microscopy. Biophysical Journal, 9, 1833-1840, 2000.

A. Martorell. Indagando el origen de las mitocondrias. Biol. On-line, 3, 1-18, 2014.

G. Arboleda y R. M. Sánchez. Mitocondria y muerte celular. NOVA Publicación en Ciencias Biomédicas, 6, 190-200, 2008.

R. Thar and M. Kül. Propagation of electromagnetic radiation in Mitochondria. Journal of theoretical biology, 230, 261-270, 2004.

J. Guevara, D. Matuz y H. Vázquez. La mitocondria en el centro del universo celular. Mensaje bioquímico, 36, 65-81, 2012.

Martorell R. Regulación de la dinámica mitocondrial en neuronas sometidas a excitotoxicidad [PhD Tesis]. Barcelona: Universitat de Barcelona, 2014.

A. Vaziri, J. Tang, H. Shroff, and C.V. Shank. Multilayer three-dimensional super resolution imaging of thick biological samples, Proceedings of the National Academy of Sciences, 105, 20221-20226, 2008.

A. Danielli, K, Maslov, A. Garcia Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G.W. Dorn II, and

L. V. Wanga. Label-free photoacoustic nanoscopy. Journal of Biomedical Optics, 19, 086006-086006, 2014.

S.L. Chen, L. Guo and X. WANG. All-optical photoacoustic microscopy. Photoacoustics, 3, 143-150, 2015.

K. Kladko, I. Mitkov and A. R. Bishop. Universal scaling of wave propagation failure in arrays of coupled nonlinear cells. Physical review letters, 84, 4505, 2000.

V. Tuchin. Tissue optics: light scattering methods and instruments for medical diagnosis. Bellingham, SPIE, 2007.

P. Pilarski. Rapid simulation of wide-angle scattering from mitochondria in single cells. Optics express, 16, 12819-12834, 2008.

M. Cifra. Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems, 100, 122-131, 2010.

B. Agarwal, J. Broutman and K. Chandrashekhara. Analysis and performance of fiber composites. John Wiley & Sons, 2006.

J. Estevez. Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index. Applied physics letters, 94, 061914, 2009.

N. Grushina. Broad omnidirectional band of reflection from Fibonacci one-dimensional photonic crystals. PIERS, 5, 511-515, 2009.

W. Jiang. Nanoparticle-mediated cellular response is size-dependent. Nature nanotechnology, 3, 145-150, 2008.

L. Rayleigh. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 211, 481-502, 1892.

E.Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 58, 2059, 1987.

J. Sajeev. Localization of light. Phys. Today, 44, 32-40, 1991.

J. Joannopoulos. Photonic crystals: molding the flow of light. Princeton university press, 2011.

E. Hecht. Optics. 4th Edition, Addison Wesley Longman, USA, 1998.

W. Greiner. Classical Electrodynamics. Springer science, USA, 2012.

W. Callister and D. Rethwisch. Materials science and engineering: an introduction. Wiley, New York, 2007.

A. Sepulveda. Electromagnetismo. Universidad de Antioquía, Medellin, 2009.

A. Kavokin, J. Baumberg, G. Malpuech and F. Laussy. Microcavities. Oxford University Press, New York, 2007.

S. Chuang. Physics of optoelectronic devices. Wiley Interscience, New York, 1995.

I. Grant and W. Phillips. Electromagnetism. Jhon Wiley and Sons, USA, 2013.

M. Cottam and D. Tilley. Introduction to surface and superlattice excitations. CRC Press, 2004.

A. Lipson, S. Lipson and H. Lipson. Optical physics. Cambridge University Press, 2010.

T. Zhang. Transfer matrix method for optics in graphene layers. Journal of Physics: Condensed Matter, 25, 215301, 2013.

Published

2016-06-30

How to Cite

Segovia-Chaves, F., Suescún Díaz, D., & Cabrera, E. (2016). Simplified model mitochondrion multilayer system as a finite and periodic. Revista Politécnica, 12(22), 87–94. Retrieved from https://revistas.elpoli.edu.co/index.php/pol/article/view/880

Issue

Section

Articles

Similar Articles

<< < > >> 

You may also start an advanced similarity search for this article.