Aireación en la tecnología Biofloc (BTF): principios básicos, aplicaciones y perspectivas

Autores/as

DOI:

https://doi.org/10.33571/rpolitec.v16n31a3

Palabras clave:

Biofloc, densidades de siembra, cultivo intensivo, peces, camarones, acuacultura, biomasa

Resumen

En un mundo globalizado de creciente población ávido por nutrientes para su alimentación, la proteína de origen acuática emerge como la gran alternativa nutricional del siglo. La disminución de sus recursos para la explotación (agua, tierra y personal) implica que se deba intensificar la producción de peces y camarones y una posibilidad para dicho establecimiento es la tecnología de biofloc (BFT en su sigla en inglés). Sin embargo, esta intensificación debe ser dada con principios de eficiencia técnica y económica, por lo tanto, un correcto diseño de la aeración es de fundamental importancia para mantener las partículas en suspensión, oxigenar y mover correctamente el agua. Unido a los alimentos concentrados, el costo energético (incluyendo la aeración) son de los más importantes costos de producción utilizando la tecnología BFT. Utilizando recambios mínimos o nulos, el número, tipo y distribución de los aparatos mecánicos de aeración son cruciales para el mantenimiento de la calidad de agua para las especies cultivadas y para los microorganismos que se encuentran inmiscuidos en el sistema. En este contexto, esta revisión pretende brindar una base teórica para el estudio e implementación de los sistemas de aireación en los sistemas BFT, además de trazar perspectivas futuras para estos componentes.

In a globalized world with growing population avid for nutrients for their feeding, the aquatic originated protein emerges as the big nutritional alternative of the century. The reduction of their resources to the farming (water, field and human resource) implies that the fish and shrimp production has to be intensify and one of the possibilities for this development is Biofloc Technology (BFT). Nevertheless, this intensification has to be given with principles of economic and technical efficiency, therefore, a correct design of the aeration is a big principal to maintain the suspended particles, oxygenate and move the water correctly. The electricity (aeration included) join with the feed are the most important production costs using BFT. With water changes low or none of it, the number, type and distribution of the mechanical oxygenator devices are crucial to maintain the water quality for the cultivated species and for the microorganisms that are included on the system. In this context this revision pretends to present the basis for the study and implementation of the aeration systems on BFT, also drawing future perspectives for these components.

Métricas de Artículo

|Resumen: 1873 | HTML: 3263 | PDF: 1221 | XML: 42 |

Citado por



Biografía del autor/a

Alvaro Javier Piñeros-Roldan, Universidad de los Llanos

Médico Veterinario y Zootecnista, Estudiante Maestría en Acuicultura. Universidad de los Llanos, Instituto de Acuicultura de los Llanos. Grupo de Investigación en Acuicultura y Limnología, Villavicencio, Colombia

Mariana Catalina Gutierrez-Espinosa, Universidad de los Llanos

Zootecnista, MSc en Acuicultura, cDra en Ciencias Agrarias, Grupo de Investigación en Acuicultura, Universidad de los Llanos, Villavicencio, Colombia.

Marina Lapa-Viana, Asian Institute of Technology

Asian Institute of Technology (AIT), Construction Management Postgraduate Program (MPM/AIT), School of Engineering and Technology – CEIM, Ho Chi Minh, Vietnam

Mauricio Gustavo Coelho-Emerenciano, CSIRO - Australia

Santa Catarina State University (UDESC), Aquaculture Laboratory (LAQ/UDESC), Laguna, SC, Brazil and Animal Science Postgraduate Program (PPGZOO/UDESC), Chapecó, SC, Brazil. Present address:CSIRO Agriculture and Food, Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, Australia.

Citas

FAO. Estado mundial de la pesca y la acuicultura - contribución a la seguridad alimentaria y la nutrición para todos. Roma2016

FAO. El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. 2018

Hardgreaves, J. "Biofloc production system for aquaculture " Southern Regional Aquaculture Center 4503. 2013

Tidwell, J. Aquaculture production systems, Wiley-Blackwell.434. 2012

Vinatea, L. Princípios químicos de qualidade de água em aquacultura: Uma revisão para peixes e camarões. Florianapolis2004

Atencio-Garcia, V. J., V. M. Pertuz-Buelvas, S. B. Bru-Cordero and J. E. Ayazo-Genes. Curso teorico-práctico tecnológia en cultivo biofloc. C. d. I. P. d. l. U. d. C. CINPIC. Colombia, Universidad de Cordoba. 2013

Seibert, C. H. and A. R. Pinto. "Challenges in shrimp aquaculture due to viral diseases: Distribution and biology of the five major penaeid viruses and interventions to avoid viral incidence and dispersion." Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] 43(3). 857-864. 2012

Zorriehzahra, J. and R. Banaederakhshan. "Early mortality syndrome (ems) as new emerging threat in shrimp industry." Advances in Animal and Veterinary Sciences 3. 64-72. 2015

Martínez-Cordero, F. J. and E. Z. Sánchez. Enfermedades emergentes y cultivo de tilapia: Modelo conceptual de analisis de impactos en mexico del virus del lago de tilapia (tilv). LAQUA17, Mazatlan, Mexico, WAS.168. Year

Stokstad, E. Down on the shrimp farm, American Association for the Advancement of Science. 2010

Emerenciano, M. G. C., L. R. Martínez-Córdova, M. Martínez-Porchas and A. Miranda-Baeza. Biofloc technology (bft): A tool for water quality management in aquaculture. Water quality, InTech. 2017

Emerenciano, M. G. C., G. Gaxiola and G. Cuzon. Biofloc technology (bft): A review for aquaculture application and animal food industry. Biomass now - cultivation and utilization. 2013

Avnimelech, Y., P. Schryver, M. G. C. Emerenciano, D. Kuhn, A. Ray and N. Taw. Biofloc technology - a practical guide book. Baton Rouge, Louisiana, United States2015

Schryver, P., R. Crab, T. Defoirt, N. Boon and V. W. "The basics of biofloc technology: The added value for aquaculture." Aquaculture 277. 125-137. 2008

Avnimelech, Y. "Carbon/nitrogen ratio as a control element in aquaculture systems." Aquaculture 176. 227-235. 1999

Schenider, O., V. Sereti and J. A. J. Verret. "Analysis of nutrient flows in integrated intensive aquaculture systems." Aquacult Eng 32(3-4). 379-401. 2005

Samocha, T. M., I. M. Lopez, E. R. Jones, S. Jackson and A. L. Lawrence. "Characterization of intake and effluent waters from intensive and semi‐intensive shrimp farms in texas." Aquaculture research 35(4). 321-339. 2004

Ebeling, J. M., M. B. Timmons and J. J. Bisogni. "Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems." Aquaculture 257(1). 346-358. 2006

Van Wyk, P. Production of l. Vannamei in recirculating aquaculture systems: Management and design considerations. Proceedings of the 6th International Conference on Recirculation Aquaculture. T. T. Rakestraw, L. S. Douglas, L. Marsh et al. Roanoke, Virginia: 38-47. 2006

FAO). "Métodos sencillos para la acuicultura." Coleccion FAO Capacitación Retrieved Marzo, 2015, from ftp://ftp.fao.org/fi/CDrom/FAO_training/FAO_training/general/x6709s/Index.htm.Pages. 2003

Boyd, C. "Pond water aeration systems." Aquacult Eng 18. 9-40. 1998

Rogers, G. "Varied aerator designs provide oxygenation, mixing in biofloc systems." Global Aquaculture Advocate 13(5). 50,51. 2010

Vinatea, L. Vinatea, l. Princípios químicos de qualidade da água em aqüicultura, segunda edição revisada e ampliada. Florianópolis, Editorial UFSC2004

Vinatea, L. and J. Carvalho. "Influence of water salinity on the sotr of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs." Aquacult Eng 37. 73-78. 2007

Tucker, C. "Pond aeration." Southern Regional Aquaculture Center 3700. 8. 2005

Cancino, B. "Design of high efficiency surface aerators: Part 2. Rating of surface aerator rotors. ." Aquacult Eng 31(1-2). 99-115. 2004

Monroy-Dosta, M., R. Lara-Andrade, J. Castro-Mejia, G. Castro-Mejia and M. Coelho-Emereciano. "Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia." Revista de Biologia Marina y Oceanografía 48(3). 511-520. 2013

Krummenauer, D., L. Poersch and G. Fóes. "Sistemas de injetores de ar nos cultivos superintensivos em meio aos bioflocos." Panorama da Aquicultura. 25-31. 2016

Lara, G., D. Krummenauer, P. C. Abreu, L. H. Poersch and W. Wasielesky. "The use of different aerators on litopenaeus vannamei biofloc culture system: Effects on water quality, shrimp growth and biofloc composition." Aquaculture International 25(1). 147-162. 2017

Creswell, L. R. and F. Hoff. Aquaculture desk reference, Florida Aqua Farms Incorporated2000

Pöpel, H. J. and M. Wagner. "Prediction of oxygen transfer from simple measurements of bubble characteristics." Wat. Sci. Tech. 23. 1941-1950. 1991

Motarjemi, M. and G. J. Jameson. "Mass tranfer from very small bubbles - the optimun bubble size for aeration." Chem Eng-New York 33. 1415-1423. 1978

Hauser, M. J. B., J. Oberender, S. Richter and S. C. Muller. "Interfacial turbulence enhances oxygen transport into shallow liquid layers." Physica D 205. 170-180. 2005

Schierholza, E. L., J. S. Gulliverb, S. C. Wilhelmsc and H. E. Hennemand. "Gas transfer from air diffusers." Water Res 40. 1018-1026. 2006

Lima-Neto, I. E. "Modeling the liquid volume flux in bubbly jets using a simple integral approach. ." J Hydraul Eng-Asce 138(2). 210-215. 2012; Lima-Neto, I. E. "Turbulência induzida por jatos bifásicos do tipo gás-líquido em tanques de aeração." Engenharia Sanitária e Ambiental 15(1). 75-82. 2010

Burford, M. A. "Microbial communities affect water quality shrimp performance at belize aquaculture." Global Aquaculture Alliance. 2003

Lawson, T. B. and G. E. Merry. Procedures for evaluating low-power surface aerators under field conditions. Techniques for Modern Aquaculture. P. o. a. A. E. C. ASAE. Michigan, USA: 511. 1993

Liang, W., G. Luo, H. Tan, N. Ma, N. Zhang and L. Li. "Efficiency of biofloc technology in suspended growth reactors treating aquacultural solid under intermittent aeration." Aquacult Eng 59. 41-47. 2014

Vinatea, L. "Oxygen consumption of litopenaeus vannamei juveniles in heterotrophic medium with zero water exchange." Pesq. Agropec. Bras. 44. 534-538. 2009

Vinatea, L., W. Muedas and R. Arantes. "The impact of oxygen consumption by the shrimp litopenaeus vannamei according to body weight, temperature, salinity and stocking density on pond aeration: A simulation." Acta Scientiarum. Biological Sciences 33(2). 2011

Vinatea, L., A. O. Gálvez, C. L. Browdy, A. Stokes, J. Venero, J. Haveman, B. L. Lewis, A. Lawson, A. Shuler and J. W. Leffler. "Photosynthesis, water respiration and growth performance of litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: Interaction of water quality variables." Aquacultural Engineering 42(1). 17-24. 2010

Taw, N. "Commercial shrimp (litopenaeus vannamei) farming using biofloc system." 2010

Ebeling, J. M. and M. B. Timmons. Recirculation aquaculture systems. Aquaculture production systems. J. Tidwell. New Delhi, India, Wiley-Blackwell: 245-277. 2012

Avnimelech, Y. Biofloc technology - a practical guide book, World Aquaculture Society2009

Browdy, C. L., A. Ray, J. W. Leffler and Y. Avnimelech. Biofloc-based aquaculture system. Aquaculture production systems J. H. Tidwell. New Delhi, India, Wiley-Blackwell. 1. 2012

Publicado

2020-05-30

Cómo citar

Piñeros-Roldan, A. J., Gutierrez-Espinosa, M. C., Lapa-Viana, M., & Coelho-Emerenciano, M. G. (2020). Aireación en la tecnología Biofloc (BTF): principios básicos, aplicaciones y perspectivas. Revista Politécnica, 16(31), 29–40. https://doi.org/10.33571/rpolitec.v16n31a3

Número

Sección

Artículos