Análisis comparativo en la respuesta lineal de sistemas estructurales muro-pórtico representativos de Bucaramanga incorporando interacción suelo estructura

Autores/as

  • María Alejandra Oliveros-Caicedo Ingeniera civil, Magister en ingeniería civil (C), Universidad Industrial de Santander. maria2218108@correo.uis.edu.co orcid https://orcid.org/0009-0003-9387-0987
  • David Sebastián Cotes-Prieto Magister en Ingeniería civil, Profesor cátedra Universidad Industrial de Santander (UIS), dscotpri@correo.uis.edu.co orcid https://orcid.org/0000-0001-7761-1617
  • Luis Eduardo Zapata-Orduz PhD. Ingeniero civil, Profesor titular, Universidad Industrial de Santander (UIS), luisezap@uis.edu.co ORCID: https://orcid.org/0000-0001-8586-602X orcid https://orcid.org/0000-0001-8586-602X

DOI:

https://doi.org/10.33571/rpolitec.v19n38a11

Palabras clave:

Sistemas representativos, Sistemas muro-pórtico, Interacción suelo-estructura, Fuerza Horizontal Equivalente, Respuesta estructural

Resumen

El presente artículo evalúo la influencia de la Interacción Suelo – Estructura (ISE) en la respuesta estructural lineal de sistemas muro-pórtico regulares representativos de Bucaramanga-Colombia utilizando el enfoque de subestructura propuesto por Winkler. Se recopiló información de sistemas locales existentes utilizando base de datos oficiales. Mediante el diseño de experimentos factorial 22, se crearon nueve edificios artificiales con diferentes tipos de suelo y número de pisos. Estos edificios fueron diseñados y detallados bajo la idealización de base fija, siguiendo la normativa sismorresistente local. Se llevaron a cabo análisis incluyendo y excluyendo la ISE. Los resultados revelaron que la ISE tuvo influencia significativa en la respuesta lineal de las estructuras ubicadas en zonas de amenaza sísmica alta, presentando variación en el periodo fundamental, cambio en la respuesta modal, incremento de derivas y disminución en el cortante de base. Además, se encontró que también afecta el método de análisis utilizado para el diseño.

This paper evaluates the influence of Soil-Structure Interaction (SSI) on the linear structural response of regular wall-frame systems representative of Bucaramanga-Colombia using the substructure approach proposed by Winkler. Information was collected from existing local systems study using official databases. Using the 22 factorial design of experiments, nine artificial buildings were created with different soil types and number of floors. These buildings were designed and detailed under the fixed base idealization, following the local seismic-resistant regulations. Analyses were carried out including and excluding the ISE. The results revealed that the ISE had a significant influence on the linear response of structures located a high seismic hazard zone, presenting variation in the fundamental period, change in the modal response, increase in drifts and decrease in the base shear. In addition, it was found that it also affects the analysis method for the design.

 

Métricas de artículo

|Resumen: 487 | PDF: 262 | HTML: 122 |

Métricas PlumX

Citas

Medina Encina, Fernando; Gutiérrez de Agüera, José M. (2013), UN MODELO NUMÉRICO PARA EL ESTUDIO DE LOS EFECTOS DE INTERACCIÓN SUELO-ESTRUCTURA EN LA RESPUESTA SÍSMICA DE EDIFICIOS CIMENTADOS EN UN SEMIESPACIO POROELÁSTICO – Capitulo 5, Universidad de Sevilla.

Faisal Mehraj Wani, Jayaprakash Vemuri, Chenna Rajaram, Dushyanth V. Babu R, Effect of soil structure interaction on the dynamic response of reinforced concrete structures, Natural Hazards Research, Volume 2, Issue 4, 2022, Pages 304-315, ISSN 2666-5921, https://doi.org/10.1016/j.nhres.2022.11.002.

Faheem Butt, Piotr Omenzetter, Seismic response trends evaluation and finite element model calibration of an instrumented RC building considering soil–structure interaction and non-structural components, Engineering Structures, Volume 65, 2014, Pages 111-123, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2014.01.045.

Jishuai Wang, Tong Guo, Zhenyu Du, Experimental and numerical study on the influence of dynamic structure-soil-structure interaction on the responses of two adjacent idealized structural systems, Journal of Building Engineering, Volume 52, 2022, 104454, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2022.104454.

Comisión asesora permanente para el régimen de construcciones sismo resistentes, Reglamento colombiano de construcción sismo resistente. NSR-10. Bogotá D.C, 2010

Elnashai, A. S., & McClure, D. C. (1996). Effect of modelling assumptions and input motion characteristics on seismic design parameters of RC bridge piers. Earthquake Engineering and Structural Dynamics, 25(5), 435-463. https://doi.org/10.1002/(SICI)1096-9845(199605)25:5<435::AID-EQE562>3.0.CO;2-P

Ciampoli, M. y Pinto, P.E. (1995). Efectos de la interacción suelo-estructura en la respuesta sísmica inelástica de los pilares de los puentes. Revista de Ingeniería Estructural-asce, 121, 806-814.

Khalil L, Sadek M, Shahrour I. (2007) Influence of the soil-structure interaction on the fundamental period of buildings. Earthquake Engineering and Structural Dynamics; 36(15):2445–245

Vivek, B., and P. Raychowdhury. 2017. “Influence of SSI on period and damping of buildings supported by shallow foundations on cohesionless soil.” Int. J. Geomech. 17 (8): 04017030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000890.

GEORGE MYLONAKIS & GEORGE GAZETAS (2000) SEISMIC SOIL-STRUCTURE INTERACTION: BENEFICIAL OR DETRIMENTAL?, Journal of Earthquake Engineering, 4:3, 277-301, DOI: https://doi.org/10.1080/13632460009350372

Visagie, P W W, Haas, T N, & van Zijl, G P A G. (2022). Investigating the behaviour factor and seismic response of structural wall systems in low- to medium-rise buildings when soil-structure interaction is considered. Journal of the South African Institution of Civil Engineering, 64(2), 38-55. https://dx.doi.org/10.17159/2309-8775/2022/v64no2a4.

Veletsos, A. S., and Nair, V. V. (1975). ‘‘Seismic interaction of structures on hysteretic foundations.’’ J. Struct. Engrg., ASCE, 101(1), 109–129.

Veletsos, A. S., and Verbic, B. (1973). ‘‘Vibration of viscoelastic foundations.’’ J. Earthquake Engrg. Struct. Dyn., 2 (1), 87–102.

Li Shan, Floriana Petrone, Sashi Kunnath, Robustness of RC buildings to progressive collapse: Influence of building height, Engineering Structures, Volume 183, 2019, Pages 690-701, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2019.01.052.

Peralta Alvarez, Máximo G. (2012); ANÁLISIS ESTÁTICO NO LINEAL Y DINÁMICO NO LINEAL DEL HOSPITAL DE VIELHA, programa de máster en ingeniería del terreno e ingeniería sísmica, Barcelona, España.

FEMA (2020) A Practical Guide to Soil-Structure Interaction Technical Publication (FEMA P-2091), Washington.

Lou M, Wang H, Chen X, et al. Structure-soil-structure interaction: Literature review[J]. Soil Dynamics and Earthquake Engineering, 2011,31(12):1724-1731.

Raychowdhury P (2011) Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incor-porating nonlinear soil–structure interaction (SSI), Engineering Structures, 33: 958-967.

Fatahi, B. and Tabatabaiefar, H.R. (2014), “Fully nonlinear versus equivalent linear computation method for seismic analysis of Mid-Rise buildings on soft soils”, Int. J. Geomech., 14(4), 04014016.

Gazetas G (1991), Foundation vibrationsFoundation Engineering Handbook, Ed. H Y Fang, Van Nostrand Reinhold, Nueva York.

DANE. COLOMBIA - Censo de Edificaciones -DANE-DIMPE-CEED-2007-A-2021, septiembre 01, 2022.

Municipio de Bucaramanga (NIT. 890.201.222-0, ubicada en la Calle 35 No. 10-43 (Alcaldía de Bucaraman-ga)), Secretaría de planeación, www.bucaramanga.gov.co.

Servicio Geológico Colombiano. (2018, 25 mayo). ArcGIS Web Application. Velocidad de onda de corte a 30 metros de profundidad (Vs30) en Colombia. Recuperado 13 de junio de 2022, de https://srvags.sgc.gov.co/JSviewer/Velocidad_de_Onda_de_Corte_Vs_a_30_Mts_Colombia/

Fernández Bao, S. (2020, July 13). Diseño de experimentos : diseño factorial (Projecte Final de Màster Ofi-cial). UPC, Escola d'Enginyeria de Barcelona Est, Departament de Matemàtiques. Retrieved from http://hdl.handle.net/2117/339723.

ESRI. (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

Minitab, I., 2020. MINITAB, Available at: http://www.minitab.com/en-US/products/minitab

González, V., Botero, J. C., Rochel, R., Vidal, J., & Álvarez, M. (2005). Propiedades mecánicas del acero de refuerzo utilizado en Colombia. Ingeniería y Ciencia, 1(1),67-76.[fecha de Consulta 9 de Marzo de 2023]. ISSN: 1794-9165. Recuperado de: https://www.redalyc.org/articulo.oa?id=83510105

Mohammad Seddiq Eskandari Nasab, Seungho Chun, Jinkoo Kim,Soil-structure interaction effect on seis-mic retrofit of a soft first-story structure, Structures, Volume 32, 2021, Pages 1553-1564, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2021.03.105.

Hamid Asadi-Ghoozhdi, Reza Attarnejad, Amir R. Masoodi, Arsalan Majlesi, Seismic assessment of irregular RC frames with tall ground story incorporating nonlinear soil–structure interaction, Structures, Volume 41, 2022, Pages 159-172, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2022.05.001.

S.P. Naik, R.N. Patra, J.N. Malik Distribución espacial de la velocidad de la onda de corte para el suelo aluvial cuaternario tardío de la ciudad de Kanpur, norte de la India Geotech Geol Eng, 32 (1) (2014), pp. 131-149, 10.1007/s10706-013-9698-3.

M.V. Requena-Garcia-Cruz, R. Bento, P. Durand-Neyra, A. Morales-Esteban, Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon, Structures, Volume 38, 2022, Pages 599-617, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2022.02.024.

ALVAREZ CASTRO, JAVIER IVAN, Edher Aladin Sandoval Villamizar, and Vladimir Ernesto Merchan Jai-mes. “ESTUDIO PARA LA DETERMINACION DEL ANGULO DE FRICCION INTERNO A PARTIR DEL ENSAYO DE PENETRACION ESTANDAR PARA MATERIALES DEL AREA METROPOLITANA DE BUCARAMANGA [re-curso electronico].” UIS, 2012. Print.

ASCE, 2017a, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16, Structural Engineering Institute of American Society of Civil Engineers, Reston, Virginia.

Computers & Structures. (2021). Etabs v19.1.0 [Computer software]. https://www.csiamerica.com/products/etabs

MALDONADO RONDON, ESPERANZA, and Gustavo Chio Chio. ANALISIS SISMICO DE EDIFICACIONES. Bucaramanga: UIS, 2004. Print.

Das, B. M. (2001). Principles of Geotechnical Engineering (3rd ed.). PWS Publishing Company.

Bowles, J. E. (1997). Foundation Analysis and Design (5th ed.). McGraw-Hill.

Winkler, E. (1867). Die Lehre von der Elasticität und Festigkeit: Auf Grundlage der Erfahrungen und Ver-suche. Carl Gerold.

ASCE, 2017b, Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-17, Structural Engineer-ing Institute of American Society of Civil Engineers, Reston, Virginia.

Onur Kaplan, Yucel Guney, Adem Dogangun, A period-height relationship for newly constructed mid-rise reinforced concrete buildings in Turkey, Engineering Structures, Volume 232, 2021, 111807, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2020.111807.

Abdel Raheem, Shehata & Ahmed, Mohamed & Alazrek, Tarek. (2014). Soil-Structure Interaction Effects on Seismic Response of multi-story Buildings on Raft Foundation. Journal of Engineering sciences, Assiut universi-ty. 42. 05-930. 10.21608/jesaun.2014.111441.

Davide Forcellini, Seismic fragility of tall buildings considering soil structure interaction (SSI) effects, Struc-tures, Volume 45, 2022, Pages 999-1011, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2022.09.070.

M.V. Requena-Garcia-Cruz, R. Bento, P. Durand-Neyra, A. Morales-Esteban, Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon, Structures, Volume 38, 2022, Pages 599-617, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2022.02.024.

Luis G. Arboleda-Monsalve, Jaime A. Mercado, Vesna Terzic, Kevin R. Mackie, Soil-Structure Interaction Effects on Seismic Performance and Earthquake-Induced Losses in Tall Buildings, 2020, Journal of Geotech-nical and Geoenvironmental Engineering / Volume 146 Issue 5 - May 2020 doi:10.1061/(ASCE)GT.1943-5606.0002248

Faisal Mehraj Wani, Jayaprakash Vemuri, Chenna Rajaram, Dushyanth V. Babu R, Effect of soil structure interaction on the dynamic response of reinforced concrete structures, Natural Hazards Research, Volume 2, Issue 4, 2022, Pages 304-315, ISSN 2666-5921, https://doi.org/10.1016/j.nhres.2022.11.002.

Faisal Mehraj Wani, Jayaprakash Vemuri, Chenna Rajaram, Dushyanth V. Babu R, Effect of soil structure interaction on the dynamic response of reinforced concrete structures, Natural Hazards Research, Volume 2, Issue 4, 2022, Pages 304-315, ISSN 2666-5921, https://doi.org/10.1016/j.nhres.2022.11.002.

Dewald Z. Gravett, Christos Mourlas, Vicky-Lee Taljaard, Nikolaos Bakas, George Markou, Manolis Papa-drakakis, New fundamental period formulae for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs, Soil Dynamics and Earthquake Engineering, Volume 144, 2021, 06656, ISSN 0267-7261, https://doi.org/10.1016/j.soildyn.2021.106656.

Descargas

Publicado

2023-08-30

Cómo citar

Oliveros-Caicedo, M. A., Cotes-Prieto, D. S., & Zapata-Orduz, L. E. (2023). Análisis comparativo en la respuesta lineal de sistemas estructurales muro-pórtico representativos de Bucaramanga incorporando interacción suelo estructura. Revista Politécnica, 19(38), 173–191. https://doi.org/10.33571/rpolitec.v19n38a11