Composition, thermophysical properties and thermal diffusivity of cooked bollo

Authors

  • Diego Felipe Tirado Armesto Universidad de Cartagena
  • José David Torres González Universidad de Cartagena
  • Diofanor Acevedo Correa Universidad de Cartagena
  • Kathy Paola Barrios Tano Universidad de Cartagena
  • Piedad Margarita Montero Universidad de Cartagena

Keywords:

Thermal diffusivity, thermophysical properties, cooking, buns cob, heat transfer

Abstract

Cooking is an important process in food processing in terms of sensory and food safety aspects. The aim of this study was to analyze the proximal content and thermophysical properties of bollo. Furthermore, the thermal diffusivity of cooked bollo was calculated. The cooking process was carried out by using a water bath with temperature controlled, which was designed for this purpose at 95 °C. The method used for determining the diffusivity is based on the analytical solution of the heat transfer equation for cylindrical coordinates. The thermal diffusivity, thermal conductivity, specific heat and density of the bollo were within the ranges of values reported by other authors. A value of thermal diffusivity of 2,86*10-06 m2/s was found. Statistically significant differences in the percentages of fat, moisture, and ash between corn, mass, and prepared bun was observed.

Article Metrics

 Abstract: 748  HTML (Español (España)): 2653  PDF (Español (España)): 776 

Author Biographies

Diego Felipe Tirado Armesto, Universidad de Cartagena

Ingeniero de Alimentos y M.Sc. Ingeniería Ambiental, Universidad de Cartagena, Colombia. Ph.D. (c) Ingeniería Química, Universidad Complutense de Madrid, España. Investigador del Grupo de Investigación Nutrición, Salud y Calidad Alimentaria (NUSCA), Universidad de Cartagena.

José David Torres González, Universidad de Cartagena

Ingeniero de Alimentos, Universidad de Cartagena. M.Sc. Ciencias Agroalimentarias, Universidad de Córdoba, Colombia. Estudiante de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile. Investigador del Grupo de Investigación Nutrición, Salud y Calidad Alimentaria (NUSCA), Universidad de Cartagena. *e-mail: jtorresg3@unicartagena.edu.co

Diofanor Acevedo Correa, Universidad de Cartagena

Ingeniero de Alimentos y Químico Farmacéutico, Universidad de Cartagena. Especialista en Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia. Ph.D. en ingeniería de Alimentos, Universidad del Valle, Colombia. Investigador del Grupo de Investigación Nutrición, Salud y Calidad Alimentaria (NUSCA), Universidad de Cartagena.

Kathy Paola Barrios Tano, Universidad de Cartagena

Ingeniera de Alimentos, Universidad de Cartagena.

Piedad Margarita Montero, Universidad de Cartagena

5Ingeniera de Alimentos, Universidad de la Salle, Colombia. Especialista en Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia. M.Sc. Ciencia y Tecnología de Alimentos, Universidad del Zulia, Venezuela. Ph.D. Ciencias Mención Gerencia, Universidad Dr. Rafael Belloso Chacín, Venezuela. Directora del Grupo de Investigación Nutrición, Salud y Calidad Alimentaria (NUSCA), Universidad de Cartagena.

References

Torrenegra, M.E., Granados, C., Acevedo, D., Guzmán, L.E., Alvarez, I. y Padilla, N. Caracterización del proceso de elaboración del bollo limpio y de mazorca en Villanueva (Bolívar-Colombia), Revista de Biotecnología en el Sector Agropecuario y Agroindustrial, 11(2), 148-155, 2013.

Castilla, Y., Mercado, I.D., Mendoza, V. y Monroy, M.L. Determinación y cuantificación de los niveles de aflatoxinas en bollos de mazorca producidos en Arjona (Departamento de Bolívar - Colombia), Avances Investigación en Ingeniería, 8(1), 69–74 (2011).

Moncada, L.M. y Gualdrón, L. Retención de nutrientes en la cocción, freído, y horneado de tres alimentos energético, Revista de Investigaciones, 6(2), 179-187, 2006.

Ayadi, M.A., Imakni, I. y Attia, H. Thermal diffusivities and influence of cooking time on textural, microbiological and sensory characteristics of turkey meat prepared products, Journal food and bio-products processing, 87(4), 327–333, 2009.

Lemus-Mondaca, R., Zambra, C.E., Torres, P.B. y Moraga, N. Modelado de dinámica de fluidos y transferencia de calor y masa en procesos agroalimentarios por método de volúmenes finitos, Revista Dyna, 78(169), 140-149, 2011.

Siripon, K., Tansakul, A. y Mittal, G.S. Heat transfer modeling of chicken cooking in hot water, Food Research International, 40(7), 923–930, 2007.

Segrado, R. Principios de cocina II/Transferencia de Calor y efectos generales de la cocción. 1era Ed. Quintana Roo, México: Editorial Universidad de Quintana Roo, pp.150, 2007.

Baïri, A., Laraqi, N. y García de María, J.M. Determination of thermal diffusivity of foods using 1D Fourier cylindrical solution, Journal of Food Engineering, 78(2), 669-675, 2007.

Carciofi, B., Faistel, J., Gláucia, M.F., Aragão, G. y Laurindo, J.B. Determination of thermal diffusivity of mortadella using actual cooking process data, Journal of Food Engineering, 55(1), 89-94 (2002).

Markowski, M., Bialobrzewski, I., Cierach, M. y Agnieszka, A. Determination of thermal diffusivity of Lyoner type sausages during water bath cooking and cooling, Journal of Food Engineering, 65, 591–598, 2004.

Moreira, R.G., Castell-Perez, M.E. y Barrufet, M.A. Deep-fat frying. Fundamentals and applications. Gaithersburg, Maryland: An aspen publication, 75-177, 1999.

Choi, Y. y Okos, M. Effects of temperature and composition on the thermal properties of foods, Food Engineering and Process Applications, 1, 93-101, 1985.

A.O.A.C. Official Methods of Analysis of A.O.A.C. International, 17th edition, Maryland, USA: Association of Official Analytical Chemists, 2003.

Tavman, S., Tavman, O.H. y Evcin, S. Measurement of thermal diffusivity of granular food materials, Int Commun Heat Mass Transfer, 24(5), 945–953, 1997.

Arámbula, G., Barrón, L., González, J., Moreno, E. y Luna, G. Efecto del tiempo de cocimiento y reposo del grano de maíz nixtamalizada, sobre las características fisicoquímicas, reológicas, estructurales y texturales del grano, masa y tortillas de maíz, ALAN, 51(2), 187-194, 2001.

Arrazola, G., Paez, M. y Alvis, A. Composición, Análisis termofísico y análisis sensorial de frutos colombianos: Parte 1: Almendro (Terminalia Catappa L.), Información Tecnológica, 25(3), 17-22, 2014.

Arrazola, G., Paez, M. y Alvis, A. Composición, análisis termofísico y sensorial de frutos colombianos. Parte 2: Acerola (Malpighia emarginata L.), Información Tecnológica, 25(3), 23-30, 2014b.

Hassan, H. y Ramaswamy, H. Measurement and targeting of thermophysical properties of carrot and meat based alginate particles for thermal processing applications, Journal of Food Engineering, 107, 117–126, 2011.

Bitra, V., Banu, S., Ramakrishna, P., Narender, G. y Womac, A.R. Moisture dependent thermal properties of peanut pods, kernels, and shells, Biosystems Engineering, 106, 506-512, 2010.

Tirado, D.F., Acevedo, D. y Guzmán, L.E. Coeficientes convectivos de transferencia de calor durante el freído de láminas de tilapia “Oreochromis niloticus”, Información Tecnológica, 24(6), 41-46, 2013.

Tirado, D.F., Acevedo, D. y Puello, P. Determinación Computacional del Coeficiente de Transferencia de Calor y Propiedades Termofísicas de Alimentos, Información tecnológica, 25(3), 53-58, 2014.

Tirado, D.F., Acevedo, D. y Montero, P.M. Transferencia de Calor y Materia durante el Proceso de Freído de Alimentos: Tilapia (Oreochromis niloticus) y Fruta de Pan (Artocarpus communis), Información tecnológica, 26(1), 85-94, 2015.

Tirado, D.F., Acevedo, D. y Montero, P.M. Secado de rodajas de fruto del árbol del pan mediante la técnica de Ventana Refractiva®, Tecno Lógicas, 19(36), 103-111.

Dickenson, R.V. y Read, R.B. Thermal diffusivity of meats, Trans ASHRAE, 81, 356–364, 1975.

Kong, J.Y., Yano, T. y Kim, J.D. Prediction of effective thermal diffusivity of fish and meats, Bioscience, Biotechnology and Biochemistry, 58(11), 1942-1946, 1994.

Sheridian, P.S. y Shilton, N.C. Determination of the thermal diffusivity of ground beef patties under infrared radiation oven-shelf cooling, Journal of Food Engineering, 52, 39–45, 2002.

Published

2016-06-30

How to Cite

Tirado Armesto, D. F., Torres González, J. D., Acevedo Correa, D., Barrios Tano, K. P., & Montero, P. M. (2016). Composition, thermophysical properties and thermal diffusivity of cooked bollo. Revista Politécnica, 12(22), 79–86. Retrieved from https://revistas.elpoli.edu.co/index.php/pol/article/view/879

Issue

Section

Articles

Similar Articles

<< < > >> 

You may also start an advanced similarity search for this article.