Solar-powered electrocoagulation for low-cost raw water treatment in rural communities

Authors

DOI:

https://doi.org/10.33571/rpolitec.v21n42a5

Keywords:

electrocoagulation, drinking water treatment, rural water treatment, solar energy, iron electrodes

Abstract

This study investigates the feasibility of solar-powered electrocoagulation (EC) as a suitable, accessible, and low-cost treatment technology. A lab-scale batch reactor was designed to treat synthetic water simulating the physicochemical and microbiological characteristics of a tropical dry forest river, with an initial turbidity of 30 NTU, a Chemical Oxygen Demand (COD) of 50 mg/L, and a high Escherichia coli load (1×10⁶ CFU/mL). The results showed high efficiency, with a turbidity removal of approximately 88.5%, a COD reduction of 76.5%, and a log reduction value (LRV) of >6 for E. coli within 60 minutes. It is concluded that solar electrocoagulation with iron electrodes is a robust, cost-effective, and reliable alternative for small-scale drinking water treatment, holding significant potential for implementation in rural communities.

Article Metrics

 Abstract: 8  PDF (Español (España)): 3 

PlumX metrics

Author Biographies

Erlin David Carpio-Vega, Universidad Popular del Cesar

Magíster en Ciencias Ambientales

Loris Jatsyyanis Rosado-Quintero, Fundación Universitaria del Área Andina

Especialista en Gestión Ambiental

William Alberto Romero-Aroca, Fundación Universitaria del Área Andina

Especialista en Gestión Ambiental

Julio César Vega-Suárez, Fundación Universitaria del Área Andina

Magíster en Ingeniería Sanitaria

References

[1] Gualdron, L. (2018). Evaluación de la calidad de agua de ríos de colombia usando parámetros físico-químicos y biológicos. Dinamica Ambiental(1), 83-102. DOI: 10.18041/2590-6704/ambiental.1.2016.4593

[2] Barahona, Y., Luna, J., & Romero, I. (2019). Calidad bacteriológica del agua de los ríos Manaure y Ca-sacará, departamento del Cesar, Colombia. Luna Azul(46), pp. 106-124. DOI: 10.17151/luaz.2018.46.7

[3] Genesis Water Tech. (2024). Genesis Water Tech. Obtenido de Tratamiento descentralizado de aguas re-siduales: ¡el futuro es ahora!: https://es.genesiswatertech.com/blog-post/decentralised-wastewater-treatment/

[4] Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). Electrocoagulation as a wastewater treatment. The University of Sydney, School of Chemical Engineering.

[5] Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fun-damentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1-3), 199-210. DOI: 10.1016/j.jhazmat.2004.08.009

[6] Antonini, G., Rahman, M., Brooks, C., Santoro, D., Muller, C., Al-Omari, A., . . . Pearce, J. (2025). Porta-ble Solar-Integrated Open-Source Chemistry Lab for Water Treatment with Electrolysis. Technologies, 13(57). DOI: 10.3390/technologies13020057

[7] Koparal, A. S., & Öğütveren, Ü. B. (2002). Removal of nitrate from water by electroreduction and elec-trocoagulation. Journal of Hazardous Materials, 89(1), 83-94.DOI: 10.1016/S0304-3894(01)00301-6

[8] Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Te-chnology, 38(1), 11-41. DOI: https://doi.org/10.1016/j.seppur.2003.10.006

[9] Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A. H. (2015). Heavy metals removal from aqueous environments by electrocoagulation process—a systematic review. Journal of Environmental Health Science and Engineering, 13(1), 74. DOI: 10.1186/s40201-015-0233-8

[10] Ghernaout, D., Ghernaout, B., & Saiba, A. (2010). Algae and cyanotoxins removal by electrocoagula-tion: A review. Desalination and Water Treatment, 20(1-3), 133-147. DOI: 10.5004/dwt.2010.1202

[11] Al-Imara, Eman, Al-Jaryan, Rand, .FJawad, Sabrean, Kareem, Mohanad & Mubarak, Hayfaa. (2021). Engineered electrocoagulation reactor for the removal of E. coli from wastewaters. IOP Conference Series: Earth and Environmental Science. 877. 012048. 10.1088/1755-1315/877/1/012048.

[12] Schumacher, E. F. (1973). Small is Beautiful: A Study of Economics As If People Mattered. Blond & Briggs.

[13] Adelmo, A., Aguilera, Y., Veitia, E. & Brígido, O. Análisis multicriterio para la gestión integrada de aguas residuales industriales. Ingeniería Industrial, XXXVIII (1), pp. 56-67. Disponible en: <http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59362017000100006&lng=es&nrm=iso>

[14] Useche Melo, Claudia (2012). Agua y saneamiento rural. Oportunidades para la participación comunita-ria en Colombia. Nota Técnica # IDB-TN-363. Banco Interamericano de Desarrollo. DOI: http://dx.doi.org/10.18235/0009881

Published

2025-12-09

How to Cite

Carpio-Vega, E. D., Rosado-Quintero, L. J., Romero-Aroca, W. A., & Vega-Suárez, J. C. (2025). Solar-powered electrocoagulation for low-cost raw water treatment in rural communities. Revista Politécnica, 21(42), 82–87. https://doi.org/10.33571/rpolitec.v21n42a5