CONTROL OF THE MAXIMUM POWER POINT OF A SOLAR PANEL, USING SERVO SYSTEM CONTROLLER WITH INTEGRATOR AND PI CONTROLLER DESIGNED BY THE ROOTS LOCUS METHOD

Authors

  • Luis Eduardo Garcia-Jaimes Magister en Educación, Especialista en Automatización Industrial, docente investigador Politécnico Colombiano Jaime Izasa Cadavid orcid https://orcid.org/0000-0001-6255-3469
  • Diego Alejandro Herrera-Jaramillo Magister en Automatización y control industrial, Coordinador de investigación, Institución Universitaria de Envigado orcid https://orcid.org/0000-0002-3914-0794
  • Maribel Arroyave-Giraldo Magister en Automatización y control industrial, docente investigadora, Institución Universitaria de Envigado orcid https://orcid.org/0000-0001-9654-0543
  • Habib Elam-Escudero Ingeniería Electrónico en formación, Institución Universitaria de Envigado

DOI:

https://doi.org/10.33571/rpolitec.v20n39a13

Keywords:

PV system model, Buck converter control, RLM control, Servo-type control

Abstract

Photovoltaic system applications require to use a solar panel, a power converter, and a load. When voltage reduction from a panel to a battery is necessary, a buck converter is usually proposed. In the specialized literature, there are a wide variety of controllers oriented to commercial panels; However, even though measuring the energy extraction of a solar panel is the main indicator, there are other metrics such as switching effort that also affect the overall performance of the PV system. The main contribution of this work is the design of two digital controllers for photovoltaic energy extraction: a servo system controller with integrator and a PI controller based on root locus techniques considering an MPPT algorithm and system perturbations to demonstrate the reliability and efficiency of the controllers under different system scenarios. Finally, a detailed explanation of the performance of the controllers is given, showing that the two algorithms are suitable for controlling the point of maximum power in photovoltaic panels.

Article Metrics

 Abstract: 285  PDF (Español (España)): 126  HTML (Español (España)): 48 

PlumX metrics

References

Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia, 33, 311–321.

Zúniga-Ventura, Y. A. (2014). Control del punto de máxima potencia en paneles solares bajo variaciones de radiación y temperatura (Master's thesis).

SİHAM, A., Bechouat, M., Sedraoui, M., Kahla, S., & Amieur, T. (2023). Synthesis of Voltage PID Controller to Improve INC-MPPT Algorithm for Cascade Regulation of KC200GT Panel-Based Solar System. Avrupa Bilim ve Teknoloji Dergisi. European Journal of Science and Technology Special Issue 47, pp. 73-78, January 2023 Copyright © 2023 EJOSAT.

Yadav, H. K., & Mehar, V. (2022) Design and Analysis of PV System with P&O Method MPPT Technique and PID Controller algorithms, 10, 11.

Woodhouse, M., Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K., Chung, D., Kurtz, S. (2016). On the path to sunshot. the role of advancements in solar photovoltaic efficiency, reliability, and costs (Tech. Rep.). National Renewable Energy Lab. (NREL), Golden, CO (United States).

Khamooshi, M., Salati, H., Egelioglu, F., Hooshyar Faghiri, A., Tarabishi, J., Babadi,S., et al. (2014). A review of solar photovoltaic concentrators. International Journal of Photoenergy, 2014.

Benhadouga, S., Belkaid, A., Colak, I., Meddad, M., & Eddiai, A. (2021, September). Experimental Validation of The Sliding Mode Controller to Improve The Efficiency of The MPPT Solar System. In 2021 10th International Conference on Renewable Energy Research and Application (ICRERA) (pp. 333-337). IEEE.

Cuellar, J. A. (2019) Diseño de un controlador para el seguimiento del punto de máxima potencia (MPPT) en paneles solares. Tesis de maestría. Universidad Santo Tomás. Maestría en Ingeniería Electrónica. Facultad de Ingeniería Electrónica. Bogotá, Colombia

Attia, H. (2019). High performance PV system based on artificial neural network MPPT with PI controller for direct current water pump applications. International Journal of Power Electronics and Drive Systems, 10(3), 1329-1338

Tapia Palma, J. C. (2023). Diseño y simulación de un Sistema de Tracking basado en redes neuronales para mantener la máxima eficiencia de paneles solares (Master's thesis, Ecuador: Latacunga: Universidad Técnica de Cotopaxi, (UTC)).

Martín, M., Marjorie, N., & Jesús, R. F. (2023). Diseño de un Controlador Adaptativo por Modelo de Referencia Usando la Regla del MIT Aplicado a un Convertidor DC-DC Reductor de Voltaje. Revista Politécnica, 51(1), 19-28.

Tyagi, V., Rahim, N. A., Rahim, N., Jeyraj, A., & Selvaraj, L. (2013). Progress in solar PV technology: Research and achievement. Renewable and sustainable energy reviews, 20, 443–461.

Touil, S. A., Boudjerda, N., Boubakir, A., & Drissi, K. E. K. (2019). Closed loop discontinuous pulse width modulation control used in inverter grid-connected photovoltaic system for reduced switching losses. Rev. Roum. Sci. Techn.–Électrotechn. et Énerg, 64(4), 357-363.

Cuellar, J. A. , Pinzón, C. A. , & García, E. F. (2021). Diseño de un convertidor boost cuadrático controlado mediante el algoritmo de perturbar y observar. In Desarrollo e Innovación en Ingeniería (pp. 90-100). Instituto Antioqueño de Investigación (IAI).

S¸ahin, M. E., & Okumu¸s, H. ˙I. (2018). Comparison of different controllers and stability analysis for photovoltaic powered buck-boost dc-dc converter. Electric Power Components and Systems, 46 (2), 149–161.

Raghavendra, K. V. G., Zeb, K., Muthusamy, A., Krishna, T., Kumar, S. V. P., Kim, D.-H., Kim, H.-J. (2019). A comprehensive review of dc–dc converter topologies and modulation strategies with recent ad-vances in solar photovoltaic systems. Electronics, 9 (1), 31.

Radhika, S., & Margaret, V. (2021). A review on dc-dc converters with photovoltaic system in dc mi-cro grid. In Journal of physics: Conference series (Vol. 1804, p. 012155).

Pesantez, J. P., Ríos Villacorta, A., & Redrován, J. G. (2021). Integración de Sistemas Solares Fotovoltaicos en el Sector Camaronero Intensivo y Extensivo del Ecuador: Caso de Estudio en la Provincia de El Oro. Revista Politécnica, 47(2), 7-16.

Carrión-Chamba, W., Murillo-Torres, W., & Montero-Izquierdo, A. (2022). Una revisión de los últimos avances de los colectores solares térmicos aplicados en la industria. Ingenius. Revista de Ciencia y Tecnología, (27), 59-73.

Corti, F., Laudani, A., Lozito, G. M., & Reatti, A. (2020). Computationally efficient modeling of dc-dc converters for PV applications. Energies, 13 (19), 5100.

Ishaque, K., Salam, Z., & Taheri, H. (2011). Simple, fast and accurate two-diode model for photovolta-ic modules. Solar energy materials and solar cells, 95 (2), 586–594.

Herrera-Jaramillo, D. A., Henao-Bravo, E. E., González Montoya, D., Ramos-Paja, C. A., & Saavedra-Montes, A. J. (2021). Control-oriented model of photovoltaic systems based on a dual active bridge con-verter. Sustainability, 13 (14), 7689.

Nayak, B., Mohapatra, A., & Mohanty, K. B. (2017). Selection criteria of dc-dc converter and control variable for MPPT of PV system utilized in heating and cooking applications. Cogent Engineering, 4(1), 1363357. Electrical & Electronic Engineering | Research Article

Nedumgatt, J. J., Jayakrishnan, K., Umashankar, S., Vijayakumar, D., & Kothari, D.(2011). Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation. In 2011 annual IEEE India conference (pp. 1–6).

Siddiqui, M. A., Anwar, N., & Laskar, S. H. (2019, March). A simple tuning approach for PID controller based on direct synthesis and rootlocus. In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) (pp. 466-470). IEEE.

Vargas-Tamani, B. (2009). Aproximación digital de controladores sintonizados y comparación con controladores continuos y digitales diseñados. Electrónica UNMSM, 2.

Palacios, A. (2017). Controlador con observador de estados de orden completo para un motor de DC mediante dspace., 7 (1).

García Jaimes, G. M. A., L. E. (2010). Controlador tipo servo con observador de orden completo y controlador según Ciancone Marlín para un sistema de flujo. 6 (10), 34-43.

Martinez Rodriguez, J. L., & Morales Rodriguez, J. (2016). Control aplicado con variables de estado. Ediciones Paraninfo, SA.

Henríquez Seguel, F. N. (2023). Implementación de un MPPT (Maximum Power Point Tracking) para panel fotovoltaico usando PLC Fatek FBs–20MCR. Universidad de Concepción Facultad de Ingeniería Departamento de Ingeniería Eléctrica.

Restarsolar, Panel solar 210 watts monocristalino Restarsolar https://www.solartex.co/tienda/producto/panel-solar-210-watts-monocristalino-restarsolar/, (accessed Nov. 7, 2023)

Published

2024-03-22

How to Cite

Garcia-Jaimes, L. E., Herrera-Jaramillo, D. A., Arroyave-Giraldo, M., & Elam-Escudero, H. (2024). CONTROL OF THE MAXIMUM POWER POINT OF A SOLAR PANEL, USING SERVO SYSTEM CONTROLLER WITH INTEGRATOR AND PI CONTROLLER DESIGNED BY THE ROOTS LOCUS METHOD . Revista Politécnica, 20(39), 183–195. https://doi.org/10.33571/rpolitec.v20n39a13

Most read articles by the same author(s)

Similar Articles

<< < 

You may also start an advanced similarity search for this article.