Estimación de las emisiones de CO2 de concretos con residuos de vidrio

Autores/as

DOI:

https://doi.org/10.33571/rpolitec.v18n35a4

Palabras clave:

Residuos de vidrio, Emisiones de CO2, Impacto medioambiental, Desarrollo sostenible, Gestión de residuos

Resumen

El interés de incluir residuos de vidrio en el hormigón se atribuye a la creciente necesidad para su disposición, además de minimizar el uso de las materias primas empleadas en la preparación del concreto tradicional. Los residuos de vidrio, tienen un efecto sobre las propiedades en estado fresco y endurecido, sin embargo, son escasos los reportes que dan cuenta de su efecto en las emisiones de CO2. En este trabajo, se presenta una revisión de diferentes reportes que incorporan residuos de vidrio en reemplazo de los agregados o el cemento y se realizó la estimación de las emisiones de CO2. Los resultados muestran que el reemplazo de cemento por residuos de vidrio genera un efecto positivo sobre la resistencia y disminuye las emisiones de CO2, siendo mayor cuanto mayor es el reemplazo de cemento, se encontró una reducción del 22% en las emisiones para un 20% de reemplazo.

Interest to include waste glass in concrete can be ascribed to the growing need for waste disposal, as well as to minimize traditional raw material usage in concrete preparation. Glass waste has a direct effect on the properties in a fresh and hardened state; however, there are few reports that account for its effect on CO2 emissions. In this paper, a review of different reports that incorporate glass waste in replacement of aggregates or cement is presented and the estimation of CO2 emissions was made. The results show that the replacement of cement by glass waste generates a positive effect on strength and decreases carbon dioxide emissions, being greater the greater the cement replacement, a 20% reduction in CO2 emissions was found for a 20% replacement.

Métricas de artículo

 Resumen: 611  PDF: 348  HTML: 327 

Métricas PlumX

Citas

Zhang, W. Zheng, Q. Ashour, A. and Han, B., (2019), Self-healing cement concrete composites for resilient infrastructures : A review, Composites Part B: Engineering, 189, 107892, https://doi.org/10.1016/j.compositesb.2020.107892.

Vishwakarma, V. and Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review, Construction and Building Materials, 162, 96–103,https://doi.org/10.1016/j.conbuildmat.2017.11.174.

Robalo K, Costa,H. do Carmo, R. and Júlio, E. (2021). Experimental development of low cement content and recycled construction and demolition waste aggregates concrete, Construction and Building Materials, 273, 121680, https://doi.org/ 10.1016/j.conbuildmat.2020.121680.

Malhotra, V. M. (2010). Global warming, and role of supplementary cementing materials and superplasticisers in reducing greenhouse gas emissions from the manufacturing of portland cement, International Journal of Structural Engineering, 1(2), 116–130,https://doi.org/ 10.1504/IJSTRUCTE.2010.031480.

Kajaste R. and Hurme M. (2016), Cement industry greenhouse gas emissions - Management options and abatement cost, Journal of Cleaner Production, 112, 4041–4052, https://doi.org/10.1016/j.jclepro.2015.07.055.

Bogas A. and Sousa,V. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production, Journal of cleaner production, 306,127277 https://doi.org/10.1016/j.jclepro.2021.127277.

Miller,S. A. John, V. M. Pacca, S. A. and Horvath, A. November (2016) Carbon dioxide reduction potential in the global cement industry by 2050, Cement and oncrete Research, 114, 115–124, https://doi.org/10.1016/j.cemconres.2017.08.026.

Lu, B. Shi, C. and Hou,G. (2018), Strength and microstructure of CO2 cured low-calcium clinker, Construction and Building Materials, 188,. 417–423, https://doi.org/ 10.1016/j.conbuildmat.2018.08.134.

Plaza,P. Sáez del Bosque, I. F. Frías,M. Sánchez de Rojas, M. I. and Medina,C.(2021),. “Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions,” Construction and Building Materials, 285, 122926, https://doi.org/ 10.1016/j.conbuildmat.2021.122926.

Hossain,M. U. Poon,C. S. Lo,I. M. C. and Cheng,J. C. P. (2016), Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA, Resour. Conserv. Recycl., 109, 67–77, https://doi.org/10.1016/j.resconrec.2016.02.009.

Thomas,A. Lombardi,D. R. Hunt,D. and Gaterell, M. (2009), Estimating carbon dioxide emissions for aggregate use, Proceedings of the Institution of Civil Engineers: Engineering Sustainability 162(3)135–144, https://doi.org/ 10.1680/ensu.2009.162.3.135.

Chiaia,B. Fantilli,A. P. Guerini,A. Volpatti,G. and Zampini,D. (2014), Eco-mechanical index for structural concrete, Construction and Building Materials,67,386–392, https://doi.org/ 10.1016/j.conbuildmat.2013.12.090.

Adesina,A. (2020), Recent advances in the concrete industry to reduce its carbon dioxide emissions, Environmental Challenges, 1, 100004, https://doi.org/ 10.1016/j.envc.2020.100004.

Purnell P. and Black,L. (2012), Embodied carbon dioxide in concrete: Variation with common mix design parameters, Cement and Concrete Research 42(6), 874–877, https://doi.org/10.1016/j.cemconres.2012.02.005.

Arıoğlu Akan,M. Ö. Dhavale,D. G. and Sarkis,J. (2017), Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain, Journal of Cleaner Production. 167, 1195–1207, https://doi.org/10.1016/j.jclepro.2017.07.225.

Hammond G. P. and Jones,C. I. (2008), Embodied energy and carbon in construction materials, Proceedings of Institution of Civil Engineers: Energy, 161(2), 87–98, https://doi.org/10.1680/ener.2008.161.2.87.

Kumar,V. K. Priya,A. K. Manikandan,G. Naveen,A. S. Nitishkumar,B. and Pradeep,P. (2020), Review of materials used in light weight concrete, Materials Today: Proceedings, 37 (2) 3538–3539, https://doi.org/10.1016/j.matpr.2020.09.425.

Esmaeili J. and Oudah Al-Mwanes,A. (2021), A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for ement, Materials Today: Proceedings 42, 1958–1965, https://doi.org/ 10.1016/j.matpr.2020.12.242.

Singh,N. Li,J. and Zeng, X. (2016), Solutions and challenges in recycling waste cathode-ray tubes, Journal of Cleaner Production, 133, 188–200, https://doi.org/10.1016/j.jclepro.2016.04.132.

Guo,P. Meng,W. Nassif,H. Gou,H. and Bao,Y. (2020), New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure, Construction and Building Materials., 257, 119579, https://doi.org/ 10.1016/j.conbuildmat.2020.119579.

Kulkarni N. G. and Rao,A. B. (2016), Carbon footprint of solid clay bricks fired in clamps of India, Journal of Cleaner Production, 135, 1396–1406,https://doi.org/10.1016/j.jclepro.2016.06.12.

Souto-Martinez,A. Arehart, J. H. and Srubar,W. V. (2018), Cradle-to-gate CO2e emissions vs. in situ CO2 sequestration of structural concrete elements, Energy and Buildings 167, 301–311, https://doi.org/10.1016/j.enbuild.2018.02.042.

Akpan P. U. and Fuls,W. F. (2021), Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions, Energy, 214, 119026, https://doi.org/ 10.1016/j.energy.2020.119026.

Batayneh,M. Marie,I. and Asi,I. (2007), Use of selected waste materials in concrete mixes, Waste Management, 27(12), 1870–1876, https://doi.org/ 10.1016/j.wasman.2006.07.026.

Ismail Z. Z. and AL-Hashmi,E. A. (2009), Recycling of waste glass as a partial replacement for fine aggregate in concrete, Waste Management., 29(2), 655–659, https://doi.org/ 10.1016/j.wasman.2008.08.012.

Sharifi,Y. Houshiar,M. and Aghebati, B. (2013), Recycled glass replacement as fine aggregate in self-compacting concrete, Frontiers of Structural and Civil Engineering, 7(4) 419–428, https://doi.org/10.1007/s11709-013-0224-8.

Sharma,L. Taak,N. and Bhandari,M. (2021), Influence of ultra-lightweight foamed glass aggregate on the strength aspects of lightweight concrete, Materials Today: Proceedings, 45, 3240-3246 https://doi.org/10.1016/j.matpr.2020.12.383.

Arivalagan S. and Sethuraman, V. (2020), Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach, Materials Today Proceedings., 45(7), 6035-6041, https://doi.org/ 10.1016/j.matpr.2020.09.722.

Tamanna,N. Tuladhar,R. and Sivakugan, N. Apr. (2020), Performance of recycled waste glass sand as partial replacement of sand in concrete, Construction and Building Materials.,239, 117804, https://doi.org/ 10.1016/j.conbuildmat.2019.117804.

Park,S. B. Lee,B. C. and Kim,J. H. (2004), Studies on mechanical properties of concrete containing waste glass aggregate, Cement and Concrete Research 34(12) 2181–2189, https://doi.org/10.1016/j.cemconres.2004.02.006.

Bisht K. and Ramana,P. V. (2018), Sustainable production of concrete containing discarded beverage glass as fine aggregate, Construction and Building Materials, 177, 116–124, https://doi.org/10.1016/j.conbuildmat.2018.05.119.

Wang C. C. and Wang,H. Y. (2017), Assessment of the compressive strength of recycled waste LCD glass concrete using the ultrasonic pulse velocity, Construction and Building Materials, 137, 345–353, https://doi.org/ 10.1016/j.conbuildmat.2017.01.117.

Steyn, Z. C. Babafemi,A. J. Fataar,H. and Combrinck,R. (2021). Concrete containing waste recycled glass, plastic and rubber as sand replacement, Construction and Building Materials 269,121242, https://doi.org/ 10.1016/j.conbuildmat.2020.121242.

Omoding, N. Cunningham,L. S. and Lane-Serff,G. F. (2021), Effect of using recycled waste glass coarse aggregates on the hydrodynamic abrasion resistance of concrete, Construction and Building Materials, 268, 121177, https://doi.org/10.1016/j.conbuildmat.2020.121177.

Topçu I. B. and Canbaz,M. (2004), Properties of concrete containing waste glass,” Cement and Concrete Research 34(2) 267–274, https://doi.org/10.1016/j.cemconres.2003.07.003.

Terro, M. (2006) Properties of concrete made with recycle crushed glass at elevated temperatures. Build. Environ. 41(5), 633-639. https://doi.org/10.1016/j.buildenv.2005.02.018

Hooi L. S. and Min,P. J. (2017), Potential of Substituting Waste Glass in Aerated Light Weight Concrete, Procedia Engineering, 171, 633–639, https://doi.org/10.1016/j.proeng.2017.01.398.

Hai He, Z. Min, Zhan, P. Gui, Du,S. Ju Liu,B. and Bin Yuan, W. (2019), Creep behavior of concrete containing glass powder, Composites. Part B Engineering,166,13–20, https://doi.org/10.1016/j.compositesb.2018.11.133.

Raju, A. S. Anand,K. B. and Rakesh,P. (2020), Partial replacement of Ordinary Portland cement by LCD glass powder in concrete,” Materials. Today Proceedings., 12 https://doi.org/10.1016/j.matpr.2020.10.661.

Islam,G. M. S. Rahman,M. H. and Kazi, N. (2017), Waste glass powder as partial replacement of cement for sustainable concrete practice, International Journal of Sustainable Built Environment, 6(1), 37–44, https://doi.org/10.1016/j.ijsbe.2016.10.005.

Elaqra,H. A. M. A. Haloub,A. and Rustom,R. N. (2019), Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete, Construction and Building Materials, 203, 75–82, https://doi.org/10.1016/j.conbuildmat.2019.01.077.

Du H. and Tan,K. H. (2017), Properties of high volume glass powder concrete, Cement and Concrete Composites, 75, 22–29, https://doi.org/10.1016/j.cemconcomp.2016.10.010.

Balasubramanian,B. Gopala Krishna,G. V. T. Saraswathy, V. and Srinivasan,K. (2021), Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic, Construction and Building Materials, 278, 122400, https://doi.org/ 10.1016/j.conbuildmat.2021.122400.

Jain,K. L. Sancheti,G. and Gupta, L. K. (2020), Durability performance of waste granite and glass powder added concrete, Construction and Building Materials, 252, 119075, https://doi.org/10.1016/j.conbuildmat.2020.119075.

Cassar J. and Camilleri,J. (2012), Utilisation of imploded glass in structural concrete,” Construction and Building Materials, 29, 299–307,https://doi.org/10.1016/j.conbuildmat.2011.10.005.

Kamali M. and Ghahremaninezhad,A. (2015) Effect of glass powders on the mechanical and durability properties of cementitious materials, Construction and Building Materials, 98, 407–416, https://doi.org/ 10.1016/j.conbuildmat.2015.06.010.

Gokulnath V, Ramesh B, and Suvesha S, (2020) Influence on flexural properties of glass powder in self compacting concrete,” Materials Today Proceedings, 22, 788–792, https://doi.org/10.1016/j.matpr.2019.10.153.

Schneider,M. (2019), The cement industry on the way to a low-carbon future, Cement and Concrete Research, 124, 105792, https://doi.org/ 10.1016/j.cemconres.2019.105792.

Yang,K. H. Jung,Y. B. Cho,M. S. and Tae,S. H. (2015), Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete, Journal of Cleaner Production, 103,. 774–783, https://doi.org/10.1016/j.jclepro.2014.03.018.

Alnahhal,M. F. Alengaram,U. J. Jumaat M. Z., Abutaha, Alqedra,F. M. A. and Nayaka,R. R. (2018), Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement, Journal of Cleaner Production, 203, 822–835, https://doi.org/10.1016/j.jclepro.2018.08.292.

Jiménez, L. F. Domínguez, J. A. and Vega-Azamar R. E., (2018), Carbon footprint of recycled aggregate concrete, Advances in Civil Engineering, 2018, https://doi.org/10.1155/2018/7949741.

Publicado

2022-04-28

Cómo citar

Arbelaez-Perez, O. F., Buriticá-Cardona, Y. ., & Cataño-Ramos, W. A. (2022). Estimación de las emisiones de CO2 de concretos con residuos de vidrio. Revista Politécnica, 18(35), 52–70. https://doi.org/10.33571/rpolitec.v18n35a4

Artículos más leídos del mismo autor/a

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.