Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes

Palabras clave: biogás, membranas poliméricas, membranas inorgánicas, membranas de matriz mixta, separación de dióxido de carbono

Resumen

La remoción de CO2 en mezclas de CO2/CH4 para aumentar el contenido de energía en gas natural o biogás y prevenir problemas de corrosión, ha impulsado el desarrollo del proceso de separación de CO2 utilizando membranas.  Las características más relevantes que ofrece la tecnología basada en membranas incluyen la alta eficiencia energética, el costo reducido y el rendimiento altamente flexible. Esta revisión  proporciona una descripción de los trabajos reportados desde 2010 hasta 2020 sobre los diferentes tipos de membranas disponibles: poliméricas, inorgánicas y de matriz mixta para el proceso de separación de CO2/CH4;  se reportan las condiciones experimentales y los determinantes primarios del rendimiento y la eficiencia de la separación (permeabilidad de CO2 y selectividad CO2/CH4).  Este trabajo ofrece una nueva perspectiva de cada membrana para facilitar una mejor apreciación de su papel en la mejora del rendimiento general del proceso

 

The remotion of CO2 from CO2/CH4 mixes to increasing energy content in natural gas or biogas and to prevent corrosion problems, has driven the development of CO2 separation process through membranes.  The attractive features offered by this technology include high energy efficiency, reduced cost and highly flexible performance. This review provides an overview of the reported paper from 2010 to 2020 different types of membranes available: polymeric, inorganic and mixed matrix for CO2/CH4 separation process, experimental conditions and primary determinants of separation performance and efficiency (permeability of CO2 and CO2/CH4 selectivity).  This work would open up a new perspective of each membrane to facilitate a better appreciation of their role in the improvement of overall process performance.

Biografía del autor/a

Diego Andres Molina-Cardona, Ingeniero Mecánico, Semillero de Investigación en Energía y Medio Ambiente, Universidad Cooperativa de Colombia

Estudiante de Ingenieria Macánica. Ultimo Semestre

Roger Junior González-Chevejoni, Ingeniero Mecánico, Semillero de Investigación en Energía y Medio Ambiente, Universidad Cooperativa de Colombia

Estudiante de Ingenieria Macánica. Ultimo Semestre

Citas

Yang, F. Chou, J. Dong, W. Sun,M. Zhao, W. (2020). Adaption to climate change risk in eastern China: Carbon emission characteristics and analysis of reduction path, Physics and. Chemistry of the Earth. 115 102829. http://doi.org/10.1016/j.pce.2019.102829.

Li, M. Luo, N. Lu, Y. (2017). Biomass energy technological paradigm (BETP): Trends in this sector, Sustainability. 9 (4) 1–28. http://doi.org/10.3390/su9040567.

Banco mundial (13 de enero de 2021) Emisones de dioxido de carbono banco mundial. https://datos.bancomundial.org/indicator/EN.ATM.CO2E.KT.

International energy agency (13 de enero) total energy supply by source, world 1990-2018. https://www.iea.org/data-and-statistics?country=world&fuel=energy%20supply&indicatorbysource.

Ullah, K. Sharma, V. Ahmad, M. Lv, P. Krahl, J. Wang,Z. et al. (2018) The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review, Renewable Sustainable Energy Review. 82 (2018) 3992–4008. http://doi.org/10.1016/j.rser.2017.10.074.

Singh, D. Sharma, D. Soni, S. Sharma, S. Kumar. P. Sharma, P. halani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel, (2020) Fuel. 262 116553. http://doi.org/10.1016/j.fuel.2019.116553.

Adelt, M. Wolf, D.Vogel, A. (2011) LCA of biomethane, Journal of Natural Gas Science. Engineering . 3 (5) 646–650. http://doi.org/10.1016/j.jngse.2011.07.003.

Kapoor, R. Ghosh, P. Tyagi, B. Vijay, V. Vijay, V Thakur, I. et al., (2020) Advances in biogas valorization and utilization systems: A comprehensive review, Journal of Cleaner Production. 273 123052. http://doi.org/10.1016/j.jclepro.2020.123052.

Chowdhury, T. Chowdhury, H. Hossain, N. Ahmed, A. Hossen, M. Chowdhury, Pet al., (2020) Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective, Journal of Cleaner Production. 272 122818. http://doi.org/10.1016/j.jclepro.2020.122818

Puricelli, S. Cardellini, G. Casadei, S. Faedo, D. Van den Oever, A. Grosso, (M. 2020) A review on biofuels for light-duty vehicles in Europe, Renewable. Sustainable. Energy Rev. 137. 110398. http://doi.org/10.1016/j.rser.2020.110398.

Li, S. Jiang, X. Sun, H. He, S. Zhang, L. Shao, L. (2019) Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture, Journal of Membrane Science. 586 185–191. http://doi.org/10.1016/j.memsci.2019.05.069.

Bragança, I. Sánchez-Soberón, F. Pantuzza, G. Alves, A. Ratola, N.(2020) Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies, Biomass and Bioenergy. 143. http://doi.org/10.1016/j.biombioe.2020.105878.

Harasimowicz, M. Orluk, P. Zakrzewska-Trznadel, G. Chmielewski, A. (2007). Application of polyimide membranes for biogas purification and enrichment. Journal Hazard Materials. 144 (3) 698–702. http://doi.org/10.1016/j.jhazmat.2007.01.098.

Medrano, J. Llosa-Tanco, M. Cechetto, V. Pacheco-Tanaka, D. Gallucci, F.(2020) Upgrading biogas with novel composite carbon molecular sieve (CCMS) membranes: Experimental and techno-economic assessment, Chemical Engineering Journal 394 (2020) 124957. http://doi.org/10.1016/j.cej.2020.124957.

Al Mamun, M. Karim, M. Rahman, M. Asiri, A. Torii, S. (2016) Methane enrichment of biogas by carbon dioxide fixation with calcium hydroxide and activated carbon, Jounal of the Taiwan Institue of. Chemical Enginners . 58. 476–481. http://doi.org/10.1016/j.jtice.2015.06.029.

Rafiee, A. Khalilpour, K. Prest,J. Skryabin, I. (2020) Biogas as an energy vector, Biomass and Bioenergy. 144. 105935. http://doi.org/:10.1016/j.biombioe.2020.105935.

Hafeez, S. Safdar, T. Pallari, E. Manos,G. Aristodemou, E. Zhang, Z. et al., CO2 capture using membrane contactors: a systematic literature review, Frontiers of Chemical Science and engineering. 107. 1-35. http://doi.org/10.1007/s11705-020-1992-z.

Fang, M. Yi, N. Di, W. Wang, T. Wang, Q. (2020) Emission and control of flue gas pollutants in CO2 chemical absorption system – A review, International Journal of Greenhouse Gas Control. 93.10294. http://doi.org/10.1016/j.ijggc.2019.102904.

Xu, M. Wang, S. Xu, L. (2019) Screening of physical-chemical biphasic solvents for CO2 absorption, International Journal of Greenhouse Gas Control. 85. 199–205. http://doi.org/10.1016/j.ijggc.2019.03.015.

Petrovic, B. Gorbounov, M. Masoudi Soltani, S. (2021) Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous and Mesoporous Materiasl. 312. 110751. http://doi.org/10.1016/j.micromeso.2020.110751.

Song, C. Liu, Q. Deng, S. Li, H. Kitamura, Y. (2019) Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges, Renewable and. Sustainable Energy Review. 101. 265–278. http://doi.org/10.1016/j.rser.2018.11.018.

Khalilpour, R. Mumford, K. Zhai,H. Abbas, A. Stevens, G. Rubin, E. (2015) Membrane-based carbon capture from flue gas: A review, Journal of Cleaner Production 103. 286–300. http://doi.org/10.1016/j.jclepro.2014.10.050.

Favre, E. Bounaceur, R. Roizard, D. (2009) Biogas, membranes and carbon dioxide capture, Journal of Membrane Science 328 (1) 11–14. http://doi.org/10.1016/j.memsci.2008.12.017.

Chuah, C. Goh, K. Yang, Y. Gong, H. Li,W. H. Karahan, E. et al., (2018) Harnessing filler materials for enhancing biogas separation membranes, Chem. Rev. 118 (18) 8655–8769. http://doi.org/10.1021/acs.chemrev.8b00091.

Hidalgo, D. Sanz-Bedate, S. Martín-Marroquín, J. Castro, J. Antolín, G.(2020) Selective separation of CH4 and CO2 using membrane contactors, Renew. Energy. 150 935–942. http://doi.org/10.1016/j.renene.2019.12.073.

Powell, C. Qiao, G (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, Journal of Membrane Science 279 (1-2) 1–49. http://doi.org/10.1016/j.memsci.2005.12.062.

Jamil, A. Ching, O. Shariff, P. (2014) Polymer-nanoclay mixed matrix membranes for CO2/CH4 separation: A review, Applied Mechanics and Materials. 625. 690–695. http://doi.org/10.4028/www.scientific.net/AMM.625.690.

Khaleque, A. Alam, M.M. Hoque, M. Mondal, S. Bin Haider, Xu, Bet al., (2020) Zeolite synthesis from low-cost materials and environmental applications: A review, Environmental Advances. 2. 100019. http://doi.org/10.1016/j.envadv.2020.100019.

Richter, H. Reger-Wagner, N. Kämnitz, S Voigt, I. Lubenau, U. Mothes, (2019) R. Carbon membranes for bio gas upgrading, Energy Procedia. 158 (2018) 861–866. http://doi.org/10.1016/j.egypro.2019.01.222.

Koros, W.J. Mahajan, R. (2001) Pushing the limits on possibilities for large scale gas separation: Which strategies?. Journal of Membrane Science 181 (1) 141. http://doi.org/10.1016/S0376-7388(00)00676-1.

Burggraaf, A.J.(1999) Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations, Journal of Membrane Science 155 (1) 45–65. http://doi.org/10.1016/S0376-7388(98)00295-6.

Kujawa, J. Cerneaux, S Kujawski, W. (2015) Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes, Journal of Membrane Science 474 (2015) 11–19. http://doi.org/10.1016/j.memsci.2014.08.054.

Wang, K. Lin, X. Jiang, G. Liu, L. Jiang, L. Doherty, C. et al., (2014). Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux, Journal of Membrane Science 471 (2014) 27–34. http://doi.org/10.1016/j.memsci.2014.07.073.

Lay, W. Zhang, J. Tang, C. Wang, R. Liu, Y. Fane, A. (2012). Factors affecting flux performance of forward osmosis systems, Journal of Membrane Science 394–395. 151–168. http://doi.org/10.1016/j.memsci.2011.12.035.

Caro, J. Noack, M. (2008). Zeolite membranes ± state of their development and perspective, Microporous and Mesoporous Materials. 115 (3) 215-233. http://doi.org/ 10.1016/j.micromeso.2008.03.008

Vanherck, K. Koeckelberghs, G. Vankelecom, I. (2013). Crosslinking polyimides for membrane applications: A review, Progress in Polymer Sciences 38 (6) 874–896. http://doi.org/ 10.1016/j.progpolymsci.2012.11.001.

Deng, L. Xue, Y. Yan, J. Lau, C. Cao, B. Li, P. (2019). Oxidative crosslinking of copolyimides at sub-Tg temperatures to enhance resistance against CO2-induced plasticization, Journal of Membrane Science 583. 40–48. http://doi.org/10.1016/j.memsci.2019.04.002.

Shah, M. McCarthy, M. Sachdeva, S. Lee, A. Jeong, H. (2012). Current status of metal-organic framework membranes for gas separations: Promises and challenges, Industrial and Engi-neering Chemistry Research. 51 (5) 2179–2199. http://doi.org/10.1021/ie202038m.

Rangnekar,N. Mittal, N. Elyassi, B. Caro, J. Tsapatsis, M. (2015) Zeolite membranes - a review and comparison with MOFs, Chem. Soc. Rev. 44 (20) 7128–7154. http://doi.org/10.1039/c5cs00292c.

Chung, S. Park, J. Li, D. Ida, J. Kumakiri, I. Lin, J. (2005). Dual-phase metal-carbonate membrane for high-temperature carbon dioxide separation, Industrial and Engineering Chemistry Research. 44 (21) 7999–8006. http://doi.org/10.1021/ie0503141.

Wang, B. Sheng, M. Xu, J. Zhao, S.Wang, J. Wang, Z. (2020) Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixed-Matrix Membranes for CO2 Separation, Small Methods. 4 (3) 1–16. http://doi.org/10.1002/smtd.201900749.

Sun, H. Wang,T. Xu, Y.Gao, W. Li, P. Niu, Q. (2017) Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation, Separation and Purification Technology 177. 327–336. http://doi.org/10.1016/j.seppur.2017.01.015.

Qiao, Z. Zhao, S.Wang, J. Wang, S.Wang, Z. Guiver, M. (2016) A Highly Permeable Aligned Montmorillonite Mixed-Matrix Membrane for CO2 Separation, Angewandte Chemie - International Edition 55 (32) 9321–9325. http://doi.org/10.1002/anie.201603211.

Wang, B. Xie, L.Wang, X. Liu, X. Li, J. J (2018). Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal, Green Energy Environmental. 3 (3) 191–228. http://doi.org/10.1016/j.gee.2018.03.001.

Scholes, C. Stevens, G. Kentish, S. (2012). Membrane gas separation applications in natural gas processing, Fuel. 96 (2012) 15–28. http://doi.org/10.1016/j.fuel.2011.12.074.

Caro, J. (2020). Diffusion coeficcients in nanoporous solids derived from membrane permeation measurements. The Journal of Membrane Biology. 583. 1-2. https://doi.org/10.1007/s10450-020-00262-z.

Wijmans, J. Baker, R. (1995) The solution-diffusion model: a review, Journal of Membrane Science 107 (1-2) 1–21. https://doi.org/10.1016/0376-7388(95)00102-I.

Benito, J. Conesa, A. Rodriguez, M. ((2004). Membranas cerámicas: Tipos, metodos de obtención t caracterización. Cerámica y Vidrio, 43 (5) 829–842.

Ruthven, D. DeSisto, W. Higgins, S. (2009). Diffusion in a mesoporous silica membrane: Validity of the Knudsen diffusion model, Chemical Engineering Science 64 (13) 3201–3203. https://doi.org/10.1016/j.ces.2009.03.049.

Hernandez, A. Calvo, J. Prfidanos, P. Tejerina, F. (1996). Pore size distributions in microporous membranes . A critical analysis of the bubble point extended method, Journal of Membrane Science. 7388. 1-12. https://doi.org/10.1016/0376-7388(95)00025-9

Izquierdo, M. (2008). Temperature influence on transport parameters characteristic of Knudsen and Poiseuille flows, Chemical Engineerin Scence. 63 (22) 5531–5539. https://doi.org/10.1016/j.ces.2008.07.034.

Scholes, C. (2018). Water resistant composite membranes for carbon dioxide separation from methane, Applied Science 8 (5). 2-12. https://doi.org/10.3390/app8050829.

Lei, L. Lindbråthen, A. Zhang, X Favvas, E. Sandru, Hillestad M., et al., (2020). Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening, Journal of Membrane Science 614 (7491) 118529. https://doi.org/10.1016/j.memsci.2020.118529.

Jomekian, A. Bazooyar,B. Behbahani,R. (2020). Experimental and modeling study of CO2 separation by modified Pebax 1657 TFC membranes, Korean Journal Chemical Engineering . 37 (11) 2020–2040. https://doi.org/10.1007/s11814-020-0598-y.

Chen, X. Rodriguez, D. Kaliaguine, S. (2012). Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Separation and Purification Technology. 86 (2012) 221–233. doi:10.1016/j.seppur.2011.11.008.

Vaughn, J. Koros, W. (2012). Effect of the amide bond diamine structure on the CO2, H2S, and CH 4 transport properties of a series of novel 6FDA-based polyamide-imides for natural gas purification, Macromolecules. 45 (17) 7036–7049. https://doi.org/10.1021/ma301249x.

Ahmad, A. Adewole, J. Leo, C. Sultan, A. S. Ismail, S. (2014) Preparation and gas transport properties of dual-layer polysulfone membranes for high pressure CO2 removal from natural gas, J. Appl. Polym. Sci. 131 (20) 1–10. https://doi.org/10.1002/app.40924.

Hossain, I. Nam, C.Rizzuto, S. Barbieri, G. Tocci, E. Kim, T. (2019). PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances, Journal of Membrane Science 574. 270–281. https://doi.org/:10.1016/j.memsci.2018.12.084.

Li, X. Wang, Y Wu, Y. Song, S. Wang, B. Zhong, S. et al., High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane, Chinese Journal Chemical Engineering. 28 (5) 1285–1292. https://doi.org/10.1016/j.cjche.2020.02.004.

Wang, B. Gao, F. Zhang, F. Xing, W. Zhou, W. (2019). Highly permeable and oriented AlPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation, Journal of Material Chemistry A. 7 (21) 13164–13172. https://doi.org/10.1039/c9ta01233h.

Liu, B. Zhou, R. Yogo, K Kita, H. (2019). Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation, Journal of Membrane Science 573. 333–343. https://doi.org/10.1016/j.memsci.2018.11.059.

Yu, L.Fouladvand, S. Grahn, M. Hedlund, J. (2019) Ultra-thin MFI membranes with different Si/Al ratios for CO2/CH4 separation, Microporous Mesoporous Materials. 284 (2019) 258–264. https://doi.org/10.1016/j.micromeso.2019.04.042.

Hayakawa, E. Himeno S. , Synthesis of all-silica (2020). ZSM-58 zeolite membranes for separation of CO2/CH4 and CO2/N2 gas mixtures, Microporous and Mesoporous Materials. 291. 109695. https://doi.org/:10.1016/j.micromeso.2019.109695.

Sen, M. Dana, K. Das, N. (2018). Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation, Ultrason. Sonochem. 48 (2018) 299–310. https://doi.org/10.1016/j.ultsonch.2018.06.007.

Rad, M. Fatemi, S. Mirfendereski, S. (2012). Development of T type zeolite for separation of CO2 from CH4 in adsorption processes, Chemical Eng. Res. Des. 90. 1687–1695. https://doi.org/10.1016/j.cherd.2012.01.010.

Mofarahi, M. Gholipour, F.(2014) Gas adsorption separation of CO2/CH4 system using zeolite 5A, Microporous and Mesoporous Materials. 200 (2014) 1–10. https://doi.org/10.1016/j.micromeso.2014.08.022.

Ahmad, M. Martin-Gil,V. Supinkova, T. Lambert, R. Castro-Muñoz, R. Hrabanek, P. et al., (2021) Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation, Separation and Purification Technology. 254. 117582. https://doi.org/10.1016/j.seppur.2020.117582.

Park, S. Bang, J. Choi, J. Lee, S. Lee, J. Lee, J. (2014) 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2and non-CO2 greenhouse gas separations, Separation and Purification Technology 136. 286–295. https://doi.org/10.1016/j.seppur.2014.09.016.

Zhao, J Xie,K. Liu, L Liu, M. Qiu, W. Webley, P. (2019). Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite, Journal of Membrane Science. 583. 23–30. https://doi.org/10.1016/j.memsci.2019.03.073.

Li, W. Chuah, C. Nie, L. Bae, T. (2019). Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite, Journal of Industrial and Engineering Chemistry. 74. 118–125. https://doi.org/10.1016/j.jiec.2019.02.016.

Farashi, Z. Azizi, S. Rezaei-Dasht Arzhandi, M. Noroozi, Z. Azizi, N. (2019). Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix, Journal of Natural Gas Science and Engineering. 72. 103019. https://doi.org/10.1016/j.jngse.2019.103019.

Shin, H. Chi, W. Bae, S. Kim, J. J. Kim,(2017). High-performance thin PVC-POEM/ZIF-8 mixe Journal of Industrial and Engineering Chemistry. 53 (2017) 127–133. https://doi.org/10.1016/j.jiec.2017.04.013.

Guo, A. Ban, Y. Yang, K. Yang, W.(2018). Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation, Journal of Membrane Science 562. 76–84. doi:10.1016/j.memsci.2018.05.032.

Ebadi Amooghin, A. Omidkhah, M. Kargari, A. (2015). The effects of aminosilane grafting on NaY zeolite-Matrimid®5218 mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Scence. 490. 364–379. https://doi.org/10.1016/j.memsci.2015.04.070.

Gong, H. Lee, S. Bae, T. (2017). Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation, Microporous an Mesoporous Materials 237. 82–89. https://doi.org/10.1016/j.micromeso.2016.09.017.

Publicado
2021-05-21
Cómo citar
Arbelaez-Perez, O. F., Cardona-Gonzalez, C., Molina-Cardona, D. A., & González-Chevejoni, R. J. (2021). Introducción a la tecnología de membranas para la purificación de biogas y algunos desarrollos recientes. Revista Politécnica, 17(33), 76-89. https://doi.org/10.33571/rpolitec.v17n33a6
Sección
Artículos

Métricas de Artículo

Resumen : 80   PDF : 78  HTML : 12