Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
DOI:
https://doi.org/10.33571/rpolitec.v20n40a4Palabras clave:
Concretos modificados, Emisiones de CO2, Ecoeficiencia, Residuos agroindustrialesResumen
El impacto ambiental negativo de las emisiones de CO2 provenientes de la industria del hormigón, requiere la sustitución de los materiales tradicionales, por residuos que permitan mejorar las propiedades mecánicas, y disminuir las emisiones de CO2. Esta revisión recopila la información de artículos entre 2000 y 2021 y se analizan las características de diseño y los resultados encontrados en las propiedades mecánicas y en las emisiones de CO2 de los hormigones. Asimismo, se calculó la ecoeficiencia de las mezclas. Se encontró que las emisiones dependen del tipo de sustituto, de su porcentaje de sustitución, y de las condiciones de diseño (relación agua/cemento y resistencia a compresión). Se discuten las perspectivas frente al tema y los desafíos que enfrenta la industria del hormigón. Se espera que esta revisión motive incluir el cálculo de las emisiones y la ecoeficiencia de los hormigones como parámetro para cuantificar su impacto ambiental.
The negative environmental impact of CO2 emissions from the concrete industry requires the substitution of traditional materials with waste materials to improve mechanical properties and reduce CO2 emissions. This review compiles information from articles between 2000 and 2021 and analyzes the design characteristics and the results found in the mechanical properties and CO2 emissions of concrete. Also, the eco-efficiency of the mixes was calculated. It was found that emissions depend on the type of substitute, its substitution percentage, and the design conditions (water/cement ratio and compressive strength). Perspectives on the issue and the challenges facing the concrete industry are discussed. It is expected that this review will motivate to include the calculation of emissions and eco-efficiency of concrete as a parameter to quantify its environmental impact.
Métricas de artículo
Resumen: 200 PDF: 70Métricas PlumX
Citas
Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1, p. 100004, doi: 10.1016/j.envc.2020.100004.
Marcea, R. L. and Lau, K. K. (1992). Carbon Dioxide Implications of Building Materials. Journal of Forest Engineering, 3(2), 37–43, doi: 10.1080/08435243.1992.10702637.
Caldas, L. R., Saraiva, A. B., Lucena, A. F. P., Da Gloria, M. Y., Santos, A. S., and Filho, R. D. T. (2021). Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete, Resources Conservation and Recycling, 166, doi: 10.1016/j.resconrec.2020.105346.
Dixit, M. K. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters, Renewable and Sustainable Energy Reviews, 79, 390–413, doi: 10.1016/j.rser.2017.05.051.
Pomponi, F. and Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment – What does the evidence say?, Journal of Environmental Management, 181, 687–700, doi: 10.1016/j.jenvman.2016.08.036.
Baynes, T. M., Crawfordb, R., Schinabeckc, J., Bontinck, P. A., Stephan, A., Wiedmann, T., Lenzen, M., Kenway, S., Yu, M., The, S. H., Lane, J., Geschke, A., Fry, J. and Chen, G. (2018). The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction, Energy and Buildings, 164, 14–20, doi: 10.1016/j.enbuild.2017.12.056.
Rama Jyosyula, S. K., Surana, S. and Raju, S. (2020). Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building, Materials Today Proceedings, 27, 984–990, doi: 10.1016/j.matpr.2020.01.294.
Vishwakarma, V. and Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review, Construction and Building Materials, 162, 96–103, doi: 10.1016/j.conbuildmat.2017.11.174.
Robalo, K., Costa, H., do Carmo, R. and Júlio, E. (2021). Experimental development of low cement content and recycled construction and demolition waste aggregates concrete, Construction and Building Materials, 273, doi: 10.1016/j.conbuildmat.2020.121680.
Aprianti, E., Shafigh, P., Bahri, S. and Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review, Construction and Building Materials, 74, 176–187, doi: 10.1016/j.conbuildmat.2014.10.010.
Habert, G. and Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives, Cement and Concrete Composites, 31(6), 397–402, doi: 10.1016/j.cemconcomp.2009.04.001.
Raheem, A. A. and Ikotun, B. D. (2020). Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review, Journal of Building Engineering, 31, doi: 10.1016/j.jobe.2020.101428.
Scharff, H. (2014). Landfill reduction experience in The Netherlands, Waste Management, 34(11), 2218–2224, doi: 10.1016/j.wasman.2014.05.019.
Kumar, V. K., Priya, A. K., Manikandan, G., Naveen, A. S., Nitishkumar, B. and Pradeep, P. (2020). Review of materials used in light weight concrete, Materials Today Proceedings, 37(2), 3538–3539, doi: 10.1016/j.matpr.2020.09.425.
Krithika, J. and Ramesh Kumar, G. B. (2020). Influence of fly ash on concrete - A systematic review, Materials Today Proceedings, 33, 906–911, doi: 10.1016/j.matpr.2020.06.425.
Fu, Q., Xu, W., Zhao, X., Bu, M. X., Yuan, Q. and Niu, D. (2021). The microstructure and durability of fly ash-based geopolymer concrete: A review, Ceramics International, 47(21), 29550–29566, doi: 10.1016/j.ceramint.2021.07.190.
Jiang, W., Li, X., Lv, Y., Jiang, D., Liu, Z. and He, C. (2020). Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica, Construction and Building Materials, 238, doi: 10.1016/j.conbuildmat.2019.117683.
Gencel, O., Karadag, O., Oren, O. H. and Bilir, T. (2021). Steel slag and its applications in cement and concrete technology: A review, Construction and Building Materials, 283, doi: 10.1016/j.conbuildmat.2021.122783.
Raheem, A. A., Abdulwahab, R. and Kareem, M. A. (2021). Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review, Journal of Cleaner Production, 290, doi: 10.1016/j.jclepro.2021.125852.
Syahida Adnan, Z., Ariffin, N. F., Syed Mohsin S. M. and Abdul Shukor Lim, N. H. (2021). Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete, Materials Today Proceedings, doi: 10.1016/j.matpr.2021.02.400.
Depaa, R. A. B., Priyadarshini, V., Hemamalinie, A., Francis Xavier, J. and Surendrababu, K. (2020). Assessment of strength properties of concrete made with rice husk ash, Materials Today Proceedings, 45, 6724–6727, doi: 10.1016/j.matpr.2020.12.605.
Jani, Y. and Hogland, W. (2014). Waste glass in the production of cement and concrete - A review, 2(3), Elsevier
Esmaeili, J. and Oudah Al-Mwanes, A. (2021). A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement,” Materials Today Proceedings, 42, 1958–1965, doi: 10.1016/j.matpr.2020.12.242.
Chong, B. W., Othman, R., Ramadhansyah, P. J., Doh, S. I. and Li, X. (2019). Properties of concrete with eggshell powder: A review, Physics and Chemistry of the Earth, 120, doi: 10.1016/j.pce.2020.102951.
Hamada, H. M., Tayeh, B. A., Al-Attar, A., Yahaya, F. M., Muthusamy, K. and Humada, A. M. (2020). The present state of the use of eggshell powder in concrete: A review, Journal of Building Engineering, 32, doi: 10.1016/j.jobe.2020.101583.
Sathiparan, N. (2021). Utilization prospects of eggshell powder in sustainable construction material – A review, Construction and Building Materials, 293, doi: 10.1016/j.conbuildmat.2021.123465.
Jha, P., Sachan, A. K. and Singh, R. P. (2021), Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete, Materials Today Proceedings, 44, 419–427, doi: 10.1016/j.matpr.2020.09.751.
Jagadesh, P., Ramachandramurthy, A. and Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete, Construction and Building Materials, 176, 608–617, doi: 10.1016/j.conbuildmat.2018.05.037.
Torres, V., Sadique, M., Pineda, P., Bras, A., Atherton, W. and Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete, Journal of Building Engineering, 39, doi: 10.1016/j.jobe.2021.102277.
Hamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K. and Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review, Construction and Building Materials, 265, doi: 10.1016/j.conbuildmat.2020.120357.
Hamada, H. M., Thomas, B. S., Yahaya, F. M., Muthusamy, K., Yang, J., Abdalla, J. A. and Hawileh, R. A. (2021). Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review, Journal of Building Engineering, 40, doi: 10.1016/j.jobe.2021.102286.
Thomas, B. S., Kumar, S. and Arel, H. S. (2017). Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review, Renewable and Sustainable Energy Reviews, 80, 550–561, doi: 10.1016/j.rser.2017.05.128.
Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., and Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials, Materials Today Proceedings, 47, 3637–3644, doi: 10.1016/j.matpr.2021.01.248.
Mejia-ballesteros, J. E., Savastano, H., Fiorelli, J. and Frias, M. (2019). Effect of mineral additions on the microstructure and properties of blended cement matrices for fi bre-cement applications, Cement and Concrete Composites, 98, 49–60, doi: 10.1016/j.cemconcomp.2019.02.001.
Huang, H., Gao, X., Wang, H. and Ye, H. (2017). Influence of rice husk on strength and permeability of ultra-high performance concrete, Construction and Building Materials, 149, 621-628, doi: 10.1016/j.conbuildmat.2017.05.155.
Lee, S., Park, W. and Lee, H. (2013). Life cycle CO2 assessment method for concrete using CO 2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment, Energy Building, 58, 93–102, doi: 10.1016/j.enbuild.2012.11.034.
Asadollahfardi, G., Katebi, A., Taherian, P. and Panahandeh, A. (2021). Environmental life cycle assessment of concrete with different mixed designs, International Journal of Construction Management, 21(7), 665–676, doi: 10.1080/15623599.2019.1579015.
Xing, W., Tam, V. W., Le, K. N., Hao, J. L. and Wang, J. (2022). Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review, Construction and Building Materials, 317, doi: 10.1016/j.conbuildmat.2021.125950.
Sánchez, A. R., Ramos, V. C., Polo, M. S., Ramón, M. V. L. and Utrilla, J. (2021). Life cycle assessment of cement production with marble waste sludges, International Journal of Environmental Research and Public Health, 18(20), 1–16, doi: 10.3390/ijerph182010968.
Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., and Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material, Construction and Building Materials, 131, 721–740, doi: 10.1016/j.conbuildmat.2016.11.029.
Hong, J., Shen, G. Q., Feng, Y., Lau, W. S. T. and Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: A case study in China, Journal of Cleaner Production, 103, 249–259, doi: 10.1016/j.jclepro.2014.11.023.
Chiaia, B., Fantilli, A. P., Guerini, A., Volpatti, G. and Zampini, D. (2014). Eco-mechanical index for structural concrete, Construction and Building Materials, 67(C), 386–392, doi: 10.1016/j.conbuildmat.2013.12.090.
Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T. and Irmawaty, R. (2020). Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash, Case Studies in Construction Materials, 12, doi: 10.1016/j.cscm.2019.e00325.
Monteiro, H., Moura, B. and Soares, N. (2022). Advancements in nano-enabled cement and concrete: Innovative properties and environmental implications, Journal of Building Engineering, 56, doi: 10.1016/j.jobe.2022.104736.
Huntzinger, D. N. and Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies, Journal of Cleaner Production, 17(7), 668–675, doi: 10.1016/j.jclepro.2008.04.007.
Abdul-Wahab, S. A., Al-Rawas, G. A., Ali, S. and Al-Dhamri, H. (2016). Impact of the addition of oil-based mud on carbon dioxide emissions in a cement plant, Journal of Cleaner Production, 112, 4214–4225, doi: 10.1016/j.jclepro.2015.06.062.
Li, L., Jiang, Y., Pan. S. Y. and Ling, T. C. (2021). Comparative life cycle assessment to maximize CO2 sequestration of steel slag products, Construction and Building Materials, 298, doi: 10.1016/j.conbuildmat.2021.123876.
Flower, D. J. M. and Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture, The International Journal of Life Cycle Assessment, 12(5), 282–288, doi: 10.1007/s11367-007-0327-3.
Ni, S., Liu, H., Li, Q., Quan, H., Gheibi, M., Fathollahi, A. M. and Tian, G. (2022). Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes, Journal of Cleaner Production, 365, doi: 10.1016/j.jclepro.2022.132780.
Ma, F., Sha, A., Yang, P. and Huang, Y. (2016). The greenhouse gas emission from portland cement concrete pavement construction in China, International, Journal of Environmental Research and Public Health, 13(7), doi: 10.3390/ijerph13070632.
Kim, T. H., Chae, C. U., Kim, G. H. and Jang, H. J. (2016). Analysis of CO2 emission characteristics of concrete used at construction sites, Sustainability, 8(4), doi: 10.3390/su8040348.
Thomas, A., Lombardi, D. R., Hunt, D. and Gaterell, M. (2009). Estimating carbon dioxide emissions for aggregate use, Engineering Sustainability, 162(3), 135–144, doi: 10.1680/ensu.2009.162.3.135.
Turner, L. K. and Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete, Construction and Building Materials, 43, 125–130, 2013, doi: 10.1016/j.conbuildmat.2013.01.023.
Kim, T., Tae, S. and Roh, S. (2013). Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system, Renewable and Sustainable Energy Reviews, 25, 729–741, doi: 10.1016/j.rser.2013.05.013.
García-Segura, T., Yepes, V. and Alcala, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, The International Journal of Life Cycle Assessment, 19(1), 3–12, doi: 10.1007/s11367-013-0614-0.
Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Mehta, A. and Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder, Cement and Concrete Composites, 56, 9–72 doi: 10.1016/j.cemconcomp.2014.11.003.
Turk, J., Cotič, Z., Mladenovič, A. and Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA, Waste Management, 458(305), 194–205, doi: 10.1016/j.wasman.2015.06.035.
Gurse, l A. P., Maryman, H. and Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash, Journal of Cleaner Production, 112, 823–836, doi: 10.1016/j.jclepro.2015.06.029.
Gursel, A. P., Maryman, H. and Ostertag, C. (2016). “A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash, Journal of Cleaner Production, 112, 823–836, doi: 10.1016/j.jclepro.2015.06.029.
Turk, J., Cotič, Z., Mladenovič, A. and Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA, Waste Management, 45(305), 194–205, doi: 10.1016/j.wasman.2015.06.035.
Boarder, R. F. W., Owens, P. L. and Khatib, J. M. (2016). The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete, 2, Elsevier.
Serres, N., Braymand, S. and Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment, Journal of Building Engineering, 5, 24–33, doi: 10.1016/j.jobe.2015.11.004.
Tait, M. W. and Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs, The International Journal of Life Cycle Assessment, 21(6), 847–860, doi: 10.1007/s11367-016-1045-5.
Hanif, A., Kim, Y., Lu, Z. and Park, C. (2017). Early-age behavior of recycled aggregate concrete under steam curing regime, Journal of Cleaner Production, 152, 103–114, doi: 10.1016/j.jclepro.2017.03.107.
Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Abutaha, F., Alqedra, M. A. and Nayaka, R. R. (2018). Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement, Journal of Cleaner Production, 203, 822–835, doi: 10.1016/j.jclepro.2018.08.292.
Bostanci, S. C., Limbachiya, M. and Kew, H. (2018). Use of recycled aggregates for low carbon and cost effective concrete construction, Journal of Cleaner Production, 189, 176–196, doi: 10.1016/j.jclepro.2018.04.090.
Jiménez, L. F., Domínguez, J. A. and Vega-Azamar, R. E. (2018). Carbon footprint of recycled aggregate concrete, Advances in Civil Engineering, doi: 10.1155/2018/7949741.
Rashid, K., Yazdanbakhsh, A. and Rehman, M. U. (2019). Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material, Journal of Cleaner Production, 224, 396–410, doi: 10.1016/j.jclepro.2019.03.197.
Berenguer, R. A., Capraro, A. P. B., Farias de Medeiros, M. H., Carneiro, A. M. P. and de Oliveira, R. A. (2020). Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide, Journal of Environmental Chemical Engineering, 8(2), doi: 10.1016/j.jece.2020.103655.
Lee, J. W., II Jang, Y., Park, W. S., Do Yun, H. and Kim, S. W. (2020). The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs, International Journal of Concrete Structures and Materials, 14(1), doi: 10.1186/s40069-020-0392-6.
Sabău, M., Bompa, D. V. and Silva, L. F. O. (2021). Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content, Geoscience Frontiers, 12(6), doi: 10.1016/j.gsf.2021.101235.
Plaza, P., Sáez del Bosque, I. F., Frías, M., Sánchez de Rojas, M. I. and Medina, C. (2021). Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions, Construction and Building Materials, 285, doi: 10.1016/j.conbuildmat.2021.122926.
Hu, L., He, Z. and Zhang, S. (2020). Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement, Journal of Cleaner Production, 264, doi: 10.1016/j.jclepro.2020.121744.
Han, Y., Lin, R. and Wang, X.-Y. (2021). Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag, Journal of Building Engineering, 47, doi: 10.1016/j.jobe.2021.103918.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Oscar Felipe Arbelaez Perez, Jorge Hernán Gómez Ospina, Santiago Herrera Herrera, Cristian Ferney Rodríguez Rojas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.