Aplicación de Visión Artificial para la Calificación Automática de Pruebas Escritas

Autores/as

DOI:

https://doi.org/10.33571/rpolitec.v14n26a6

Palabras clave:

Visión artificial, procesamiento digital de imágenes, automatización

Resumen

Este artículo describe una aplicación de visión artificial para la automatización del proceso de calificación de exámenes escritos del tipo de selección múltiple. Una cámara digital es usada para capturar fotografías de las hojas de respuesta, que luego son adecuadas y procesadas con el fin de determinar la nota del estudiante. La adecuación de las imágenes se hace por medio de algoritmos heurísticos de filtrado y redimensionamiento de baja complejidad, con miras a portar la aplicación a una plataforma móvil en el futuro. Los resultados obtenidos son prometedores, con una tasa de aciertos de alrededor del 97 %, y con buena tolerancia a condiciones cambiantes de iluminación y orientación en la toma de las fotografías.

Métricas de artículo

 Resumen: 712  HTML: 879  PDF: 975  XML: 85 

Métricas PlumX

Citas

Sangiovanni-Vincentelli, A., "Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design," in Proceedings of the IEEE , vol.95, no.3, pp.467-506, March 2007.

Samad, T., "Building Control and Automation Systems," in Perspectives in Control Engineering Technologies, Applications, and New Directions , 1, Wiley-IEEE Press, 2001, pp.393-416.

Gonzales R., Woods R., “Digital imagen Processing”, Addison-Wesley Publishing Company, Massachusetts 2nd Edition 2002.

Xiaolian Deng, Yuehua Huang, ShengQin Feng, Changyao Wang, "Adaptive threshold discriminating algorithm for remote sensing image corner detection", Image and Signal Processing (CISP), 2010 3rd International Congress on , vol.2, no., pp.880,883, 16-18 Oct. 2010.

Chernuhin, N.A, "On an approach to object recognition in X-ray medical images and interactive diagnostics process", Computer Science and Information Technologies (CSIT), 2013 , vol., no., pp.1,6, 23-27 Sept. 2013.

Xin Sun, Xiaoxiao Wang, "Study of edge detection algorithms for lung CT image on the basis of MATLAB", Control and Decision Conference (CCDC), 2011 Chinese , vol., no., pp.810,813, 23-25 May 2011.

Pham-Minh-Luan Nguyen; Jae-Hyun Cho; Sang Bock Cho, "An architecture for real-time hardware co-simulation of edge detection in image processing using Prewitt edge operator," in Electronics, Information and Communications ICEIC), 2014 International Conference on , vol., no., pp.1-2, 15-18 Jan. 2014.

Kasi, M.K.; Rao, J.B.; Sahu, V.K., "Identification of leather defects using an autoadaptive edge detection image processing algorithm," in High Performance Computing and Applications (ICHPCA), 2014 International Conference on , vol., no., pp.1-4, 22-24 Dec. 2014.

Wang, H.; Peng, D.; Wang, W.; Sharif, H.; Wegiel, J.; Nguyen, D.; Bowne, R.; Backhaus, C., "Artificial Immune System based image pattern recognition in energy efficient Wireless Multimedia Sensor Networks," in Military Communications Conference, 2008. MILCOM 2008. IEEE , vol., no., pp.1-7, 16-19 Nov. 2008.

Fujun Ren; Xinhua Zhang; Long Wang, "A new method of the image pattern recognition based on neural networks," in Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on , vol.7, no., pp.3840-3843, 12-14 Aug. 2011.

Massari, M.; Ceriani, E.; Rigolin, L.; Bernelli-Zazzera, F., "Optimal path planning for planetary exploration rovers based on artificial vision system for environment reconstruction," in Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on , vol., no., pp.987-992, 24-28 July 2005.

Cesetti, A.; Frontoni, E.; Mancini, A.; Zingaretti, P.; Longhi, S., "Vision-based autonomous navigation and landing of an unmanned aerial vehicle using natural landmarks," in Control and Automation, 2009. MED '09. 17th Mediterranean Conference on , vol., no., pp.910-915, 24-26 June 2009.

Mathworks Inc. MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States. 2013.

Proakis J. G.; Manolakis D. G., “Digital Signal Processing (3rd Ed.): Principles, Algorithms, and Applications”. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 1996.

González, R. Woods, R. “Tratamiento Digital de Imágenes”. Ed. Addison. Wessley. USA. 1996.

Koydemir, H. C.; Gorocs, Z.; Tseng, D.; Cortazar, B.; Feng, S.; Chan, R. Y. L.; Burbano, J.; McLeod, E.; Ozcan, A. “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning”, in Lab On Chip Journal, Vol 15, pp. 1284 – 1293. 2015.

Publicado

2018-08-28

Cómo citar

Bolaños Martinez, F., Arango Zuluaga, E. I., & Vallejo Velasquez, M. A. (2018). Aplicación de Visión Artificial para la Calificación Automática de Pruebas Escritas. Revista Politécnica, 14(26), 65–74. https://doi.org/10.33571/rpolitec.v14n26a6

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.