Fortalecimiento en la biotecnología a través de la inteligencia artificial generativa: revisión sistemática sobre avances, desafíos y oportunidades para la Amazonia Colombiana
Strengthening biotechnology through generative artificial intelligence: a systematic review on advances, challenges, and opportunities for the Colombian Amazon
DOI:
https://doi.org/10.33571/rpolitec.v21n42a8Keywords:
Generative Artificial Intelligence, Biotechnology, Biodiversity, Sustainability, Systems EnginneringAbstract
Biotechnology in the Amazon region faces numerous challenges related to the sustainable use of its rich biodiversity. The integration of generative artificial intelligence (GAI) emerges as a tool that significantly accelerates this process. Therefore, this study focuses on analyzing the specific opportunities and challenges involved in implementing biotechnology together with GAI in the Colombian Amazon through a systematic review, using the PRISMA method and relevant terms such as artificial intelligence and biotechnology. The results highlight issues such as limitations in technical and communication infrastructure, the absence of a legal framework to ensure the ethical compliance of biological research, and the need to protect traditional and ancestral knowledge. Achieving sustainable development requires a global approach that balances technological innovation with ethical, social, and environmental considerations.
Article Metrics
Abstract: 13 PDF (Español (España)): 19PlumX metrics
References
[1] S. Parthiban, T. Vijeesh, T. Gayathri, B. Shanmugaraj, A. Sharma, and R. Sathishkumar, “Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals,” 2023, Frontiers Media SA. doi:10.3389/fpls.2023.1252166.
[2] M. R. Boskabadi et al., “Industrial Agentic AI and generative modeling in complex systems,” Jun. 01, 2025, Elsevier Ltd. doi:10.1016/j.coche.2025.101150.
[3] Ö. T. Kavak, Ş. Gündüz, C. Vural, and N. Enver, “Artificial intelligence based diagnosis of sulcus: assesment of videostroboscopy via deep learning,” European Archives of Oto-Rhino-Laryngology, Nov. 2024. doi: 10.1007/s00405-024-08801-y.
[4] J. Park, Y. M. Kim, S. Hong, B. Han, K. T. Nam, and Y. Jung, “Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning,” Mar. 01, 2023, Cell Press. doi: 10.1016/j.matt.2023.01.018.
[5] T. Kortemme, “De novo protein design—From new structures to programmable functions,” Feb. 01, 2024, Elsevier B.V. doi: 10.1016/j.cell.2023.12.028.
[6] S. Gaubert et al., “Exploring the neuromagnetic signatures of cognitive decline from mild cognitive impairment to Alzheimer’s disease dementia,” EBioMedicine, vol. 114, p. 105659, Apr. 2025, doi: 10.1016/j.ebiom.2025.105659.
[7] K. A. Davamani, M. Jawahar, L. J. Anbarasi, V. Ravi, A. Al Mazroa, and C. R. R. Robin, “Deep transfer learning technique to detect white blood cell classification in regular clinical practice using histopathological images,” Multimed Tools Appl, Mar. 2024, doi: 10.1007/s11042-024-19133-8.
[8] B. L. Puniya, “Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications,” 2025, Academic Press. doi: 10.1016/j.jmb.2025.169181.
[9] L. Zhang, B. Liao, D. Liu, Q. Jiang, and Q. Sun, “Artificial Intelligence empowered evolution in medicine food homology: Innovations, challenges, and future prospects,” Jul. 01, 2025, Elsevier. doi: 10.1016/j.fbio.2025.106928.
[10] A. Upadhyay et al., “Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, models, and trends in precision agriculture,” Artif Intell Rev, vol. 58, no. 3, Mar. 2025, doi: 10.1007/s10462-024-11100-x.
[11] M. Hemis, H. Kheddar, S. Bourouis, and N. Saleem, “Deep learning techniques for hand vein biometrics: A comprehensive review,” Information Fusion, vol. 114, Feb. 2025, doi: 10.1016/j.inffus.2024.102716.
[12] H. Najafi, K. Savoji, M. Mirzaeibonehkhater, S. V. Moravvej, R. Alizadehsani, and S. Pedrammehr, “A Novel Method for 3D Lung Tumor Reconstruction Using Generative Models,” Diagnostics, vol. 14, no. 22, Nov. 2024, doi: 10.3390/diagnostics14222604.
[13] X. Xiao et al., “Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges,” Sensors, vol. 25, no. 8, Apr. 2025, doi: 10.3390/s25082361.
[14] Y. Wu and L. Xie, “AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships,” Comput Struct Biotechnol J, vol. 27, pp. 265–277, 2025, doi: 10.1016/j.csbj.2024.12.030.
[15] A. S. Karim et al., “Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists,” Nat Commun, vol. 15, no. 1, Dec. 2024, doi: 10.1038/s41467-024-49626-x.
[16] S. M. Javidan, A. Banakar, K. Rahnama, K. A. Vakilian, and Y. Ampatzidis, “Feature engineering to identify plant diseases using image processing and artificial intelligence: A comprehensive review,” Smart Agricultural Technology, vol. 8, Aug. 2024, doi: 10.1016/j.atech.2024.100480.
[17] M. AlShafeey and O. Rashdan, “Genetic modification optimization technique: A neural network multi-objective energy management approach,” Energy and AI, vol. 18, Dec. 2024, doi: 10.1016/j.egyai.2024.100417.
[18] H. Lu, L. Xiao, W. Liao, X. Yan, and J. Nielsen, “Cell factory design with advanced metabolic modelling empowered by artificial intelligence,” Metab Eng, vol. 85, pp. 61–72, Sep. 2024, doi: 10.1016/j.ymben.2024.07.003.
[19] M. K. Goshisht, “Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges,” Mar. 05, 2024, American Chemical Society. doi: 10.1021/acsomega.3c05913.
[20] A. M. Andrianov, M. A. Shuldau, K. V. Furs, A. M. Yushkevich, and A. V. Tuzikov, “AI-Driven De Novo Design and Molecular Modeling for Discovery of Small-Molecule Compounds as Potential Drug Candidates Targeting SARS-CoV-2 Main Protease,” Int J Mol Sci, vol. 24, no. 9, May 2023, doi: 10.3390/ijms24098083.
[21] X. Yuan, L. Fan, H. Jin, Q. Wu, and Y. Ding, “Phage engineering using synthetic biology and artificial intelligence to enhance phage applications in food industry,” Apr. 01, 2025, Elsevier Ltd. doi: 10.1016/j.cofs.2025.101274.
[22] K. Mahjoory, A. Bahmer, and M. J. Henry, “Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention,” PLoS Comput Biol, vol. 20, no. 8, Aug. 2024, doi: 10.1371/journal.pcbi.1012376.
[23] D. Zhang, F. Xu, F. Wang, L. Le, and L. Pu, “Synthetic biology and artificial intelligence in crop improvement,” Feb. 10, 2025, Cell Press. doi: 10.1016/j.xplc.2024.101220.
[24] N. E. Wheeler, “Responsible AI in biotechnology: balancing discovery, innovation and biosecurity risks,” 2025, Frontiers Media SA. doi: 10.3389/fbioe.2025.1537471.
[25] C. Dindorf et al., “Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence,” Front Bioeng Biotechnol, vol. 12, 2024, doi: 10.3389/fbioe.2024.1350135.
[26] H. H. Rashidi et al., “Generative Artificial Intelligence in Pathology and Medicine: A Deeper Dive,” Apr. 01, 2025, Elsevier B.V. doi: 10.1016/j.modpat.2024.100687.
[27] M. Pohl, M. Uesaka, H. Takahashi, K. Demachi, and R. B. Chhatkuli, “Real-time respiratory motion forecasting with online learning of recurrent neural networks for accurate targeting in externally guided radiotherapy,” Comput Methods Programs Biomed, vol. 269, Sep. 2025, doi: 10.1016/j.cmpb.2025.108828.
[28] M. A. Arshed, S. Mumtaz, Ștefan C. Gherghina, N. Urooj, S. Ahmed, and C. Dewi, “A Deep Learning Model for Detecting Fake Medical Images to Mitigate Financial Insurance Fraud,” Computation, vol. 12, no. 9, p. 173, Aug. 2024, doi: 10.3390/computation12090173.
[29] Z. Wang et al., “Application of generative adversarial networks in the restoration of blurred optical coherence tomography images caused by optical media opacity in eyes,” BMJ Open Ophthalmol, vol. 10, no. 1, May 2025, doi: 10.1136/bmjophth-2024-001987.
[30] N. B. da Cunha, F. C. Fernandes, A. Gil-Ley, O. L. Franco, N. Timakondu, and F. F. Costa, “Bridging biomedicine and technology: the impact of AI & GenAI in life sciences and agribusiness,” Gene, p. 149623, Jun. 2025, doi: 10.1016/j.gene.2025.149623.
[31] B. Li, M. Lin, T. Chen, and L. Wang, “FG-BERT: a generalized and self-supervised functional group-based molecular representation learning framework for properties prediction,” Brief Bioinform, vol. 24, no. 6, Nov. 2023, doi: 10.1093/bib/bbad398.
[32] I. V. Pantic and S. Mugosa, “Artificial intelligence strategies based on random forests for detection of AI-generated content in public health,” Public Health, vol. 242, pp. 382–387, May 2025, doi: 10.1016/j.puhe.2025.03.029.
[33] A. Luschi, P. Nesi, and E. Iadanza, “Evidence-based clinical engineering: Health information technology adverse events identification and classification with natural language processing,” Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21723.
[34] Y. Hu, L. Sun, and T. Zhou, “Multiscale process systems engineering for electrochemically mediated CO2 capture: A mini-review,” Chem Eng Sci, vol. 307, Mar. 2025, doi: 10.1016/j.ces.2025.121340.
[35] A. Holzinger, K. Keiblinger, P. Holub, K. Zatloukal, and H. Müller, “AI for life: Trends in artificial intelligence for biotechnology,” N Biotechnol, vol. 74, pp. 16–24, May 2023, doi: 10.1016/j.nbt.2023.02.001.
[36] F. Taheri and K. Rahbar, “Improving breast cancer classification in fine-grain ultrasound images through feature discrimination and a transfer learning approach,” Biomed Signal Process Control, vol. 106, Aug. 2025, doi: 10.1016/j.bspc.2025.107690.
[37] B. Decardi-Nelson, A. S. Alshehri, A. Ajagekar, and F. You, “Generative AI and process systems engineering: The next frontier,” Comput Chem Eng, vol. 187, Aug. 2024, doi: 10.1016/j.compchemeng.2024.108723.
[38] J. Singh et al., “GeneAI 3.0: powerful, novel, generalized hybrid and ensemble deep learning frameworks for miRNA species classification of stationary patterns from nucleotides,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-56786-9.
[39] A. Winnifrith, C. Outeiral, and B. L. Hie, “Generative artificial intelligence for de novo protein design,” Jun. 01, 2024, Elsevier Ltd. doi: 10.1016/j.sbi.2024.102794.
[40] M. Mateen et al., “The role of artificial intelligence in the diagnosis of diabetic retinopathy through retinal lesion features: a narrative review,” Quant Imaging Med Surg, vol. 15, no. 5, pp. 4816–4846, May 2025, doi: 10.21037/qims-24-1791.
[41] C. Xu, A. Han, Y. Tian, and S. Sun, “Based on computer simulation and experimental verification: mining and characterizing novel antimicrobial peptides from soil microbiome,” Food Chem, vol. 467, Mar. 2025, doi: 10.1016/j.foodchem.2024.142275.
[42] M. Dara, M. Dianatpour, N. Azarpira, and N. Omidifar, “Convergence of CRISPR and artificial intelligence: A paradigm shift in biotechnology,” Sep. 01, 2024, Elsevier B.V. doi: 10.1016/j.humgen.2024.201297.
[43] J. B. Hamzyan Olia, A. Raman, C. Y. Hsu, A. Alkhayyat, and A. Nourazarian, “A comprehensive review of neurotransmitter modulation via artificial intelligence: A new frontier in personalized neurobiochemistry,” May 01, 2025, Elsevier Ltd. doi: 10.1016/j.compbiomed.2025.109984.
[44] S. J. Lee and D. M. Kim, “Cell-free synthetic biology: Navigating the new frontiers of biomanufacturing and biological engineering,” Mar. 01, 2024, Elsevier Ltd. doi: 10.1016/j.coisb.2023.100488.
[45] P. Daoutidis et al., “Machine learning in process systems engineering: Challenges and opportunities,” Comput Chem Eng, vol. 181, Feb. 2024, doi: 10.1016/j.compchemeng.2023.108523.
[46] S. Reddy, “Generative AI in healthcare: an implementation science informed translational path on application, integration and governance,” Implementation Science, vol. 19, no. 1, Dec. 2024, doi: 10.1186/s13012-024-01357-9.
[47] T. A. Undheim, “The whack-a-mole governance challenge for AI-enabled synthetic biology: literature review and emerging frameworks,” 2024, Frontiers Media SA. doi: 10.3389/fbioe.2024.1359768.
[48] M. Obayya, F. N. Al-Wesabi, M. Alshammeri, and H. G. Iskandar, “An intelligent optimized object detection system for disabled people using advanced deep learning models with optimization algorithm,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-00608-z.
[49] R. Yadav and A. Bhat, “A systematic literature survey on skin disease detection and classification using machine learning and deep learning,” Multimed Tools Appl, vol. 83, no. 32, pp. 78093–78124, Sep. 2024, doi: 10.1007/s11042-024-18119-w.
[50] A. Shata and K. Hartley, “Artificial intelligence and communication technologies in academia: faculty perceptions and the adoption of generative AI,” International Journal of Educational Technology in Higher Education, vol. 22, no. 1, Dec. 2025, doi: 10.1186/s41239-025-00511-7.
[51] V. Moysiadis et al., “Human–Robot Interaction through Dynamic Movement Recognition for Agricultural Environments,” AgriEngineering, vol. 6, no. 3, pp. 2494–2512, Aug. 2024, doi: 10.3390/agriengineering6030146.
[52] Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yois Pascuas-Rengifo, Angel Alessandro Audor-Delgado, Paula Andrea Sánchez-Orozco

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.














