Aprovechamiento de residuos de Eichhornia Crassipes para la remoción de Cr (vi) en aguas residuales simuladas
DOI:
https://doi.org/10.33571/rpolitec.v18n35a5Palabras clave:
adsorción de Cr (VI), agua residual simulada, bioadsorbente, Eichhornia crassipesResumen
Eichhornia crassipes es una planta considerada una plaga para los diferentes ecosistemas acuáticos en el mundo. Además el Cr (VI) es un contaminante acuático altamente tóxico. Se estudió la capacidad de adsorción de la Eichhornia crassipes como bioadsorbente para la remoción de Cr (VI) presente en un agua residual simulada. La concentración del ion en solución, pH y temperatura fueron estudiadas como variables en un diseño experimental factorial simétrico, y mediante análisis ANOVA. La mayor capacidad de adsorción Cr (VI) (2.5 mgꞏg-1) se obtuvo a 75 ppm de Cr (VI), pH de 1.5 y 45 °C. Se observaron grupos funcionales superficiales que mediante atracción electrostática y formación de puentes de hidrógeno favorecieron la adsorción de Cr (VI). Esto permite concluir que el bioadsorbente es efectivo para la remoción de Cr (VI) en solución con un proceso simple y de bajo costo.
Eichhornia crassipes commonly called water hyacinth, is a plant considered a pest for the different aquatic ecosystems in the world. Furthermore, Cr (VI) is a highly toxic aquatic pollutant. In order to contribute to the solution of these two environmental problems, the adsorption capacity of water hyacinth as a bioadsorbent was studied for the removal of Cr (VI) in a simulated wastewater. The ion concentration in solution, pH y temperature were studied using a symmetric factorial experimental design y applicating an ANOVA analysis. The highest Cr (VI) adsorption capacity (2.5 mgꞏg-1) was obtained at 75 ppm of Cr (VI), pH of 1.5 y 45 ° C. Surface functional groups were observed that, through electrostatic attraction y formation of hydrogen bonds, favored the adsorption of Cr (VI). This allows to conclude that this bioadsorbent is effective for the elimination of Cr (VI) in solution using a simple y low-cost process.
Métricas de artículo
Resumen: 483 PDF: 259 HTML: 56Métricas PlumX
Citas
Leventeli, Y. y Yalcin, F. (2021). Data analysis of heavy metal content in riverwater: multivariate statistical analysis and inequality expressions. Journal of Inequalities and Applications, 2021(1), 1–22. https://doi.org/10.1186/s13660-021-02549-3
Vu, C. T., Lin, C., Shern, C.-C., Yeh, G., Le, V. G. y Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, 32–42. https://doi.org/https://doi.org/10.1016/j.ecolind.2017.06.008
Giri, A. K., Patel, R. y Mandal, S. (2012). Removal of Cr (VI) from aqueous solution by Eichhornia crassipes root biomass-derived activated carbon. Chemical Engineering Journal, 185–186, 71–81. https://doi.org/10.1016/j.cej.2012.01.025
Hasan, S. H., Ranjan, D. y Talat, M. (2010). Water hyacinth biomass (WHB) for the biosorption of hexavalent chromium: Optimization of process parameters. BioResources, 5(2), 563–575.
Ibrahim, H. S., Ammar, N. S., Soylak, M. y Ibrahim, M. (2012). Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 96, 413–420. https://doi.org/10.1016/j.saa.2012.05.039
Olguín, E. J. y Sánchez-Galván, G. (2012). Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. New Biotechnology, 30(1), 3–8. https://doi.org/10.1016/j.nbt.2012.05.020
Sharma, N., Sodhi, K. K., Kumar, M. y Singh, D. K. (2021). Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environmental Nanotechnology, Monitoring and Management, 15(2021), 100388. https://doi.org/10.1016/j.enmm.2020.100388
Nur-E-Alam, M., Mia, M. A. S., Ahmad, F. y Rahman, M. (2020). An overview of chromium removal techniques from tannery effluent. Applied Water Science, 10(9), 1–22. https://doi.org/10.1007/s13201-020-01286-0
Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C. y Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health, 17(15), 1–25. https://doi.org/10.3390/ijerph17155438
Leko Kos, M. y Tadić, L. (2021). The field-scale investigation of the lowmobility of drainage canal sediments polluted by copper in lowland area of croatia. Water (Switzerland), 13(5), 1–12. https://doi.org/10.3390/w13050677
Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J. y Ismail, A. F. (2019). Recent trends of heavy metal removal from water / wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17–38. https://doi.org/10.1016/j.jiec.2019.03.029
Wang, C.-C., Du, X.-D., Li, J., Guo, X.-X., Wang, P. y Zhang, J. (2016). Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Applied Catalysis B: Environmental, 193, 198–216. https://doi.org/https://doi.org/10.1016/j.apcatb.2016.04.030
Akpor, O. B. y Muchie, M. (2010). Remediation of heavy metals in drinking water and wastewater treatment systems : Processes and applications. International Journal, 5(12), 1807–1817. Retrieved from http://www.academicjournals.org/journal/IJPS/article-full-text-pdf/00E529A31916
Ansari, A. A., Naeem, M., Gill, S. S. y AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research, 46(4), 371–376. https://doi.org/10.1016/j.ejar.2020.03.002
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A. y Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.12.116
Feng, W., Xiao, K., Zhou, W., Zhu, D., Zhou, Y., Yuan Y. y Zhao, J. (2017). Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresource Technology, 223, 287–295. https://doi.org/10.1016/j.biortech.2016.10.047
Sanmuga Priya, E. y Senthamil Selvan, P. (2017). Water hyacinth (Eichhornia crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arabian Journal of Chemistry, 10, S3548–S3558. https://doi.org/10.1016/j.arabjc.2014.03.002
Skoog, D. A., West, D. M. y Holler, E. J. (2014). Fundamentos de química analítica (9a. ed.), Cengage Learning Editores S.A. de C.V. Retrieved from https://books.google.com.co/books?id=grUEngAACAAJ
Singh, J., Kumar, V., Kumar, P. y Kumar, P. (2021). Kinetics and prediction modeling of heavy metal phytoremediation from glass industry effluent by water hyacinth (Eichhornia crassipes). International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03433-9
Wei, Y., Fang, Z., Zheng, L. y Tsang, E. P. (2017). Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Applied Surface Science, 399, 322–329. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.12.090
Dersseh, M. G., Melesse, A. M., Tilahun, S. A., Abate, M. y Dagnew, D. C. (2019). Water hyacinth: Review of its impacts on hydrology and ecosystem services-Lessons for management of Lake Tana. Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation (Vol. 1824). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815998-9.00019-1
De, D., Naturales, R., Néstor, D., Franco Gonzáles, G., Eduard, J. y Rojas, R. (2019). Plan de Prevención Manejo y Control del buchón de agua (Eichhornia crassipes) para la jurisdicción de la Corporación Autónoma Regional de Cundinamarca CAR, 16.
Wang, Z., Zheng, F. y Xue, S. (2019). The economic feasibility of the valorization of water hyacinth for bioethanol production. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030905
Durand, B. G. (2017). Lirio acuático, de plaga a producto sustentable. El Universal. México, D.F. Retrieved from https://www.eluniversal.com.mx/articulo/ciencia-y-salud/ciencia/2017/05/1/lirio-acuatico-de-plaga-producto-sustentable
Amaringo Villa, F. A. (2013). Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Revista de Investigación Agraria y Ambiental, 4(2), 27. https://doi.org/10.22490/21456453.982
Fu, S., Fang, Q., Li, A., Li, Z., Han, J., Dang, X. y Han, W. (2021). Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method. Energy Science and Engineering, 9(1), 80–100. https://doi.org/10.1002/ese3.817
Cao, F., Lian, C., Yu, J., Yang, H. y Lin, S. (2019). Bioresource Technology Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresource Technology, 276(December 2018), 211–218. https://doi.org/10.1016/j.biortech.2019.01.007
Zhou, W., Zhu, D., Langdon, A., Li, L., Liao, S. y Tan, L. (2009). The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes. Bioresource Technology, 100(21), 5366–5369. https://doi.org/10.1016/j.biortech.2009.05.066
Sheikhmohammadi, A., Hashemzadeh, B., Alinejad, A., Mohseni, S. M., Sardar, M., Sharafkhani, R., … Bay, A. (2019). Application of graphene oxide modified with the phenopyridine and 2-mercaptobenzothiazole for the adsorption of Cr (VI) from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. Journal of Molecular Liquids, 285(Vi), 586–597. https://doi.org/10.1016/j.molliq.2019.04.106
Priya, A. K., Yogeshwaran, V., Rajendran, S., Hoang, T. K. A., Soto-Moscoso, M., Ghfar, A. A. y Bathula, C. (2022). Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biom aqueous medium using rice husk ash: Kinetic and thermodynamic approach. Chemosphere, 286(August 2021). https://doi.org/10.1016/j.chemosphere.2021.131796
Zeng, H., Zeng, H., Zhang, H., Shahab, A., Zhang, K., Lu y. y Ullah, H. (2021). Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. Journal of Cleaner Production, 286(xxxx), 124964. https://doi.org/10.1016/j.jclepro.2020.124964
Taborda Acevedo, E. A., Jurado, W. y Cortés, F. B. (2016). Effect of the temperature in adsorption phenomena of water onto Sub-Bituminous coal. Boletín de Ciencias de la Tierra, (39), 57–64. https://doi.org/10.15446/rbct.n39.54127
Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B. y Mishra, I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 272(1–2), 89–104. https://doi.org/10.1016/J.COLSURFA.2005.07.016
Puigdomenech, I. (2020). Hydra-Medusa. Stockholm: (Versión 1). KTH Royal Institute of Technology. Retrieved from https://www.kth.se/che/medusa/
Komy, Z. R., Abdelraheem, W. H. y Ismail, N. M. (2013). Biosorption of Cu2+ by Eichhornia crassipes: Physicochemical characterization, biosorption modeling and mechanism. Journal of King Saud University - Science, 25(1), 47–56. https://doi.org/https://doi.org/10.1016/j.jksus.2012.04.002
Sarkar, M., Rahman, A. K. M. L. y Bhoumik, N. C. (2017). Remediation of chromium and copper on water hyacinth ( E . crassipes ) shoot powder. Water Resources and Industry, 17(December 2016), 1–6. https://doi.org/10.1016/j.wri.2016.12.003
Parameswari, E., Premalatha, R. P., Davamani, V., Kalaiselvi, P., Paul Sebastian, S. y Suganya, K. (2021). Biosorption of chromium ions through modified Eichhornia crassipes biomass form the aqueous medium. Journal of Environmental Biology, 42(1), 62–73. https://doi.org/10.22438/JEB/42/1/MRN-1397
Li, X., Liu, S., Na, Z., Lu, D. y Liu, Z. (2013). Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecological Engineering, 60, 160–166. https://doi.org/10.1016/j.ecoleng.2013.07.039
Yu, J., Jiang, C., Guan, Q., Ning, P., Gu, J., Chen, Q., Miao, R. (2018). Chemosphere Enhanced removal of Cr ( VI ) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere, 195, 632–640. https://doi.org/10.1016/j.chemosphere.2017.12.128
Carreño-Sayago, U. F. (2021). Development of microspheres using water hyacinth (Eichhornia crassipes) for treatment of contaminated water with Cr(VI). Environment, Development and Sustainability, 23(3), 4735–4746. https://doi.org/10.1007/s10668-020-00776-0
Fernando, U. y Sayago, C. (2021). Design , Scaling , and Development of Biofilters with E crassipes for Treatment of Water Contaminated with Cr ( VI ), (Vi).
Tehada-Tovar, C., Paz, I., Acevedo-Correa, D., Espinosa-Fortich, M. y López.Babel, C. (2021). Adsorption of chrome (VI) and mercury (II) in solution using hyacinth (Eichhornia crassipes). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 54–65. https://doi.org/10.18684/bsaa(19)54-65
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Alba Nelly Ardila-Arias, Erasmo Arriola-Villaseñor, William Álvarez-González, José Alfredo Hernández-Maldonado, Rolando Barrera-Zapata
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.