Amortiguadores de masa sintonizada: una revisión general

Autores/as

DOI:

https://doi.org/10.33571/rpolitec.v18n35a10

Palabras clave:

Amortiguador Pasivo, Amortiguador Semi Activo, Magnetoreológico, Controlador, Híbrido

Resumen

Las cargas que generan los eventos sísmicos y los fuertes vientos son fuerzas de la naturaleza que someten a las obras civiles a situaciones extremas, lo que provoca eventualmente la falla de las estructuras y en muchas ocasiones, la pérdida de vidas humanas. Para enfrentar estas fuerzas de carácter aleatorio y de difícil predicción, la ingeniería estructural plantea normativas de diseño y construcción de obligatorio cumplimiento en la mayoría de los países del mundo, que permiten que las estructuras puedan resistir de manera adecuada las fuerzas impuestas. Y como la historia lo ha demostrado, algunas veces un buen diseño no es suficiente, por lo que la ingeniería sismoresistente desarrolla nuevas metodologías y dispositivos que ayuden a proteger aún más a las estructuras cuando se ven sometidas a acciones como los sismos y los vientos. Para afrontar estos retos, aparecen mecanismos como los amortiguadores y controladores, agrupados como dispositivos pasivos, activos, semiactivos e híbridos, con diseños innovadores que contribuyen en gran medida a dar mayor seguridad y confianza a nuestras obras civiles. En este artículo se presenta una visión general de los amortiguadores de masa sintonizada, su desarrollo histórico, modelos mecánicos y analíticos, alcances, fortalezas y debilidades.

The loads generated by seismic events and strong winds are forces of nature that subject civil works to extreme situations, generally causing the failure of structures and in many cases, the loss of human lives. In order to face these forces of random character and difficult to predict, structural engineering proposes design and construction regulations that are mandatory in most countries of the world, which allow the structures to adequately resist the imposed forces. And as history has shown, sometimes a good design is not enough, so seismic-resistant engineering develops new methodologies and devices that help to further protect structures when they are subjected to actions such as earthquakes and winds. In order to face these challenges, mechanisms such as shock absorbers and controllers appear, grouped as passive, active, semi-active and hybrid devices, with innovative designs that greatly contribute to give greater safety and confidence to our civil works. This article presents a general overview of seismic dampers and controllers, their historical development, mechanical and analytical models, scopes, strengths and weaknesses.

Métricas de artículo

 Resumen: 1227  PDF: 1219  HTML: 383 

Métricas PlumX

Citas

Abé, M. and Igusa, T. (1996). Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 198(5), pp.547-569.

Altunişik, A. C., Yetişken, A., and Kahya, V. (2018). Experimental study on control performance of tuned liquid column dampers considering different excitation directions. Mechanical Systems and Signal Processing, 102, 59-71.

Ata, A. A., and Kamel, A. G. (2018). Numerical evaluation of the effect of combined pendulum Tuned Mass Damper on a basic vibrating system. International Journal of Mechatronics and Applied Mechanics, (4), 270.

Avila, S. M. and Goncalves, P. B. (2004). Hybrid control to mitigate excessive vibrations caused by dynamic loading with random perturbations in tall buildings. ABCM Symposium series in Mechatronics, Vol. 1, pp.295-303

Ayorinde, E. O. and Warburton, G. B. (1980). Minimizing structural vibrations with absorbers. Earthquake Engineering and Structural Dynamics, 8, 219–236.

Balendra, T., Wang, C. M. and Cheong, H. F. (1995). Effectiveness of tuned liquid dampers for vibration control of towers. Engineering Structures, 17(9), 668-75.

Balendra, T., Wang, C. and Yan, N. (2001). Control of wind-excited towers by active tuned liquid column damper. Engineering Structures, 23(9), pp.1054-1067.

Barredo, E., Blanco, A., Colín, J., Penagos, V. M., Abúndez, A., Vela, L. G., & Mayén, J. (2018). Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 144, 41-53.

Bathaei, A., Zahrai, S. M. and Ramezani, M. (2017). Semi-active seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithms. Journal of Vibration and Control, pp. 1-16

Bhaiya, V., Bharti, S. D., Shrimali, M. K., & Datta, T. K. (2019). Hybrid seismic control of buildings using tuned mass and magnetorheological dampers. Proceedings of the institution of civil engineers-structures and buildings, 1-17.

Bitaraf, M., Ozbulut, O. E., Hurlebaus, S. and Barroso, L. (2010). Application of semi-active control strategies for seismic protection of buildings with MR dampers. Engineering Structures, 32(10).

Borgues Carneiro, R., Moreira Ávila, S. and Vital de Brito, J. (2008). Parametric study on multiple tuned mass dampers using interconnected masses. International Journal of Structural Stability and Dynamics, 8(01), 187-202.

Braz-César, M. T. and Barros, R. (2012). Experimental behaviour and numerical analysis of dampers MR dampers. Fifthteenth world conference on earthquake engineering 15 WCEE, Lisboa.

Brzeski, P., Pavlovskaia, E., Kapitaniak, T. and Perlikowski, P. (2015). The application of inerter in tuned mass absorber. International Journal of Non-Linear Mechanics, 70, 20–29, El Sevier 2015.

Cao, H., Reinhorn, A. and Soong, T. T. (1998). Design of an active mass damper for a tall TV tower in Nanjing, China. Engineering Structures, 20(3), pp.134-143.

Cao, L., & Li, C. (2019). Tuned tandem mass dampers‐inerters with broadband high effectiveness for structures under white noise base excitations. Structural Control and Health Monitoring, 26(4), e2319.

Cetin, H., and Aydin, E. (2019). A New Tuned Mass Damper Design Method based on Transfer Functions. KSCE Journal of Civil Engineering, 23(10), 4463-4480.

Chang, C. C. and Yang, H. (1995). Control of Buildings Using Active Tuned Mass Dampers. Journal of Engineering Mechanics, 121(3), pp.355-366.

Chang, J. C. and Soong, T. T. (1980). Structural control using active tuned mass damper. Journal Engineering Mechanics, ASCE 106, 1091–1098 (1980)

Cheng, F. Y., Jiang, H. and Lou, K. (2008). Smart structures: innovative systems for seismic response control. CRC Press, Taylor and Francis Group.

Chey, M. H., Chase, J. G., Mander, J. B. and Carr, A. J. (2010). Semi-active tuned mass damper building systems: Application. Earthquake Engineering & Structural Dynamics, 39(1), 69-89.

Chung, L. L., Lai, Y. A., Yang, C. S. W., Lien, K. H., & Wu, L. Y. (2013). Semi-active tuned mass dampers with phase control. Journal of Sound and Vibration, 332(15), 3610-3625.

Collette, C., & Chesne, S. (2016). Robust hybrid mass damper. Journal of sound and vibration, 375, 19-27.

Cupich Rodríguez, M. y Elizondo Garza, F. (1998). Amortiguadores magnetoreológicos. Ponencia V Congreso Mexicano de Acústica. Querétaro, México, 17 y 18 de septiembre de 1998.

Datta, T. K. (2003). A state-of-the-art review on active control of structures. ISET Journal of Earthquake Technology, Paper No. 430, Vol. 40, No. 1, pp 1-17.

Demetriou, D., Nikitas, N. and Tsavdaridis, K. (2015). Semi Active Tuned Mass Dampers of Buildings: A Simple Control Option. American Journal of Engineering and Applied Sciences, 8(4), pp.620-632.

Demetriou, D., Nikitas, N. and Tsavdaridis, K. D. (2015). A Novel Hybrid Semi-active Tuned Mass Damper for Lightweight Steel Structural Applications. In Proceedings of the IJSSD Symposium on Progress in Structural Stability and Dynamics, Lisbon, Portugal (pp. 21-24).

Den Hartog, J. P. (1956). Mechanical Vibrations. 4th ed., New York, McGraw-Hill.

Dyke, S. J. (1996). Acceleration Feedback Control Strategies for Active and Semi-active Control Systems: Modeling, Algorithm Development, and Experimental Verification. Ph.D. Dissertation, University of Notre Dame, 1996.

Dyke, S. J., Spencer JR, B. F., Sain, M. K. and Carlson, J. D. (1996). Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures 5, pp. 565-575.

Ezeta, J., Mandow, A. y Cerezo, A. (2013). Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(2), pp.121-132.

Frahm, H., 1911. United States, Patent No. US989958A.

Friedman, A. J. and Dyke, S. J. (2012). Development and experimental validation of a new control strategy considering device dynamics for large-scale MR dampers using real-time hybrid simulation. Technical report, Intelligent Infrastructure Systems Lab Technical Report IISL-003, Purdue University.

Fujita, T. (1994). Application of hybrid mass damper with convertible active and passive modes using hydraulic actuator to high-rise building. In American Control Conference, 1994 (Vol. 1, pp. 1067-1072). IEEE.

Garrido, B. and Serrazin, M. (2017). Effectiveness of Tuned Mass Dampers (TMD) for earthquake protection in chilean buildings. 16th World Conference on Earthquake Engineering 16WCEE, Chile, Paper N° 1077, Registration Code: S- J1464334224, Volume 16.

Ghaboussi, J. and Abdolreza, J. (1995). Active control of structures using neural networks. Journal of Engineering Mechanics, pp 555-567.

Giaralis, A. and Taflanidis, A. A. (2015). Reliability-based design of tuned mass-damper-inerter (TMDI) equipped multi-storey frame buildings under seismic excitation. 12th International Conference on Applications of Statistics and Probability in Civil Engineering ICASP12, Vancouver, Canada, July 12-15, pp. 1-8.

Giaralis, A. and Marian, L. (2016). Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-storey buildings: the tuned mass damper interter (TMDI). Active and Passive Smart Structures and Integrated Systems, Vol. 9799, 20163.

Giaralis, A. and Petrini, F. (2017). Wind-induced vibration mitigation in tall buildings using the tuned mass damper-inerter (TMDI). Journal of Structural Engineering, ASCE, 2017.

González Padilla, M. A. (2012). Modelado y control PID-difuso de una estructura de edificio sometida a las vibraciones de un temblor. Tesis para optar obtener el grado de Maestra en Ciencias, Especialidad de Control Automático, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, unidad Zacatenco, Departamento de control automático, México.

Gutierrez Soto, M. and Adeli, H. (2013). Tuned Mass Dampers. Archives of Computational Methods in Engineering. 20(4), pp.419-431.

Hrovat, D., Barak, P. and Rabins, M. (1983). Semi‐Active versus Passive or Active Tuned Mass Dampers for Structural Control. Journal of Engineering Mechanics, 109(3), pp.691-705.

Hu, Y., Chen, M., Xu, S. and Liu, Y. (2017). Semiactive Inerter and its Application in Adaptive Tuned Vibration Absorbers. IEEE Transactions on Control Systems Technology, 25(1), pp.294-300.

Jansen, L. M. and Dyke, S. J. (2000). Semiactive control strategies for MR dampers: comparative study. Journal of Engineering Mechanics, 126(8), 795-803.

Ji, H. R., Moon, Y. J., Kim, C. H. and Lee, I. W. (2005). Structural vibration control using semiactive tuned mass damper. In The eighteenth KKCNN symposium on civil engineering-KAIST6, Taiwan (pp. 18-20).

Jiang, X. and Hojjat A. (2008), Neuro‐genetic algorithm for non‐linear active control of structures, International Journal for Numerical Methods in Engineering, 75.7, 2008, pp 770-786.

Jiménez, R. E. (2006). Observadores adaptables para edificios con amortiguadores magneto-reológicos. Tesis para obtener el grado de Doctor en ingeniería, Universidad Nacional Autónoma de México, ciudad universitaria, México D.F., 2006.

Kareem, A., Kijewski, T. and Tamura, Y. (1999). Mitigation of motions of tall buildings with specific examples of recent applications. Wind and Structures, 2(3), pp.201-251.

Kaveh, A., Mohammadi, S., O. Khadem, O., Keyhani, A. and Kalatjari, V.R. (2015). Optimum parameters of tuned mass dampers for seismic applications using charged system search. IJST, Transactions of Civil Engineering, Vol. 39, No. C1, pp 21-40, Shiraz University.

Kerboua, M., Benguediab, M., Megnounif, A., Benrahou, K. and Kaoulala, F. (2014). Semi Active Control of Civil Structures, Analytical and Numerical Studies. Physics Procedia, 55, pp.301-306.

Kim, Y. M., You, K. P., You, J. Y., Paek, S. Y., & Nam, B. H. (2016). LQR Control of Along-Wind Responses of a Tall Building using Active Tuned Mass Damper. In World Congress on Advances in Civil, Environmental and Materials Research. ACEM16. Jeju Island, Korea. August 28- Sept. 1

Kitamura, H., Fujita, T., Teramoto, T. and Kihara, H. (1988). Desing and Analysis of a tower structure with a Tuned Mass Damper. Ninth world Conference on earthquake engineering, Tokyo-Kyoto, August 2-9, Vol VIII, 415-420.

Kwok, K. C. S. (1984). Damping Increase in Building with Tuned Mass Damper. Journal of Engineering Mechanics, 110(11), 1645-1649.

Lara, L., Vital de Brito, J. y Valencia, Y. (2012). Reducción de vibraciones en un edificio mediante la utilización de amortiguadores magnetoreológicos. Dyna, año 79, Nro. 171, pp. 205-214.

Lara, L., Valencia, Y. y Vital de Brito, J. (2015). Uso de lógica difusa para la administración de un sistema disipador de energía en estructuras compuesto por amortiguadores magnetoreológicos. Revista Facultad de Ingeniería Universidad de Antioquia, No 74, pp. 151-164.

Lazar, I., Wagg, D. J. and Neild, S. A. (2013). An Inerter vibration isolation system for the control of seismically excited structures. 10th International Conference on Urban Earthquake Engineering, March 1-2, 2013, Tokyo Institute of Technology, Tokyo, Japan.

Lazar, I., Wagg, D. J. and Neild, S. A. (2014). Inerter-based Vibration Suppression Systems for Laterally and Base-Excited Structures. Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June - 2 July 2014

Lee, M. (2012). Active control to reduce the horizontal seismic response of buildings taking into account the soil-structure interaction. Soil Dynamics and Earthquake Engineering, 42, pp.132-136.

Li, C. and Liu, Y. (2002). Further characteristics for multiple tuned mass dampers. Journal of Structural Engineering, 128(10), 1362-1365.

Li, C. and Cao, B. (2014). Hybrid active tuned mass dampers for structures under the ground acceleration. Structural Control and Health Monitoring, 22(4), pp.757-773.

Li, C., Liu, Y. and Wang, Z. (2003). Active Multiple Tuned Mass Dampers: A New Control Strategy. Journal of Structural Engineering, 129(7), pp.972-977.

Li, C., & Cao, L. (2019). Active tuned tandem mass dampers for seismic structures. Earthquakes and Structures, 17(2), 143-162.

Lin, C. C., Lin, G. L. and Lung, H. Y. (2014). Dynamic test of multiple tuned mass dampers for vibration control of high-rise buildings. Tenth U.S. National Conference on Earthquake Engineering, Frontiers of Earthquake Engineering.

López Almansa, F. and Bozzo, L. M. (2003). Aplicación del control de estructuras al diseño antisísmico. Doctorado en Ingeniería, Universidad de la Coruña, Notas de clase, 2003.

Luft, R. W. (1979). Optimal tuned mass dampers for buildings. Journal of the Structural Division, 105(12), 2766-2772.

Maebayashi, K., Shiba, K., Mita, A. and Inada, Y. (1992). Hybrid mass damper system for response control of building. In Proc. Tenth World Conference on Earthquake Engineering (pp. 2359-64).

Mamat N., Yakub F., Shaikh Salim S.A.Z., Ab Rashid M.Z., Munawarah S., Roslan S.A. (2020) Seismic Control of a Building Structure Equip with Hybrid Mass Damper Using Sliding Mode Control. In: Jamaludin Z., Ali Mokhtar M. (eds) Intelligent Manufacturing and Mechatronics. SympoSIMM 2019. Lecture Notes in Mechanical Engineering. Springer, Singapore

Marian, L., & Giaralis, A. (2014). Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 38, 156-164.

McNamara, R. J. (1977). Tuned Mass Dampers for Buildings. Journal of the Structural Division, 103(9), 1785-1798.

Matta, E. and De Stefano, A. (2009). Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings. Mechanical Systems and Signal Processing, 23(1), 127-147.

Meena, A., Kumar, M., Kumar, A. and Sharma, V. (2016). Vibration control using tuned mass damper. WALIA journal, 32(S2): 33-42

Miller, R. K., Masri, S. F., Dehghanyar, T. J. and Caughey, T. K. (1988). Active vibration control of large civil structures. Journal of Engineering Mechanics, 114(9), 1542-1570.

Morison, J. and Karnopp, D. (1973). Comparison of optimized active and passive vibration absorbers. Joint Automatic Control Conference, No. 11, pp. 932-938.

Nagashima, I., Maseki, R., Asami, Y., Hirai, J. and Abiru, H. (2001). Performance of hybrid mass damper system applied to a 36-storey high-rise building. Earthquake Engineering & Structural Dynamics, 30: 1615–1637. doi:10.1002/eqe.84

Nazarimofrad, E., & Zahrai, S. M. (2016). Seismic control of irregular multistory buildings using active tendons considering soil–structure interaction effect. Soil Dynamics and Earthquake Engineering, 89, 100-115.

Nishimura, I., Kobori, T., Sakamoto, M., Koshika, N., Sasaki, K. and Ohrui, S. (1992). Active tuned mass damper. Smart Materials and Structures, 1(4), pp.306-311.

Nigdeli, S. M., Bekdaş, G. and Sayin, B. (2016). Optimum Tuned Mass Damper Design using Harmony Search with Comparison of Classical Methods, International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2016), AIP Conf. Proc. Vol 1863, 540004-1–540004-4

Nigdeli, S. M., Bekdas, G. and Yang, X. (2016). Optimum Tuning of Mass Dampers for Seismic Structures Using Flower Pollination Algorithm. International Journal of Theoretical and Applied Mechanics, 1, 264-268

Ormondroyd, J. and Den Hartog, J. P. (1928). The theory of dynamic vibration absorber. Journal of Applied Mechanics, Trans. ASME, Vol. 49, pp. A9-A22.

Pastia, C. and Luca, S. G. (2013). Vibration control of a frame structure using semi-active tuned mass damper. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 59(4), 31.

Peng, G. R., Li, W. H., Du, H., Deng, H. X. and Alici, G. (2014). Modelling and identifying the parameters of a magneto-rheological damper with a force-lag phenomenon. Applied Mathematical Modelling, 38(15), pp. 3763-3773.

Pietrosanti, D., De Angelis, M. and Basili, M. (2017). Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI). Earthquake Engineering & Structural Dynamics, 46(8), pp. 1367-1388.

Pinkaew, T. and Fujino, Y. (2001). Effectiveness of semi-active tuned mass dampers under harmonic excitation. Engineering Structures, 23(7), pp. 850-856.

Preumont, A., Alaluf, D. and Bastaits, R. (2014). Hybrid Mass Damper: A Tutorial Example, Active and passive vibration control of structures, International Centre for Mechanical Sciences CISM, Udine, Italia.

Raveesh R. M. and Sahana T. S. (2015). Effect of Tuned Mass Dampers on Multistore RC Framed Structures. International Journal of Engineering Research & Technology, Vol. 3 Issue 8, ISSN: 2278-0181, pp. 1115-1125.

Ricciardelli, F., Pizzimenti, D. and Mattei, M. (2003). Passive and active mass damper control of the response of tall buildings to wind gustiness. Engineering Structures, 25, 1199–1209.

Radu, A., Lazar, I. F., & Neild, S. A. (2019). Performance‐based seismic design of tuned inerter dampers. Structural Control and Health Monitoring, 26(5), e2346.

Rahmani, H. and Könke, C. (2019). Seismic Control of Tall Buildings Using Distributed Multiple Tuned Mass Dampers. Advances in Civil Engineering, 2019.

Ruiz, R., Taflanidis, A. A., Giaralis, A., & Lopez-Garcia, D. (2018). Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures. Engineering Structures, 177, 836-850.

Saito, T., Shiba, K. and Tamura, K. (2001). Vibration control characteristics of a hybrid mass damper system installed in tall buildings. Earthquake engineering & structural dynamics, 30(11), 1677-1696.

Sakai, F., Takaeda, S. and Tamaki, T. (1989). Tuned liquid column damper - new type device for suppression of building vibrations. Proc. Int. Conf. on Highrise Buildings, Nanjing, China, pp. 926-931.

Salvi, J., Rizzi, E., Rustighi, E. and Ferguson, N. S. (2015). On the optimization of a hybrid tuned mass damper for impulse loading. Smart Materials and Structures, 24(8).

Setareh, M., Ritchey, J., Murray, T., Koo, J. and Ahmadian, M. (2007). Semiactive Tuned Mass Damper for Floor Vibration Control. Journal of Structural Engineering, 133(2), pp.242-250.

Sgobba, S. and Marano, G. C. (2010). Optimum design of linear tuned mass dampers for structures with nonlinear behaviour. Mechanical Systems and Signal Processing, 24(6), 1739-1755.

Smith, M. (2002). Synthesis of Mechanical Networks: The Inerter. proceedings of the 41sl IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, December 2002, pp. 1657-1662.

Soliman, I., Tait, M. and El Damatty, A. (2016). Modeling and analysis of a structure semi-active tuned liquid damper system. Structural Control and Health Monitoring, 24(2).

Sonmez, E., Nagarajaiah, S., Sun, C. and Basu, B. (2016). A study on semi-active Tuned Liquid Column Dampers (sTLCDs) for structural response reduction under random excitations. Journal of Sound and Vibration, 362, pp.1-15.

Spencer, B., Dyke, S. and Sain, M. (1996). Magnetorheological dampers: a new approach to seismic protection of structures. Proceedings of the 35th IEEE Conference on In Decision and Control, Vol. 1, pp. 676-681.

Spencer, B., Dyke, S., Sain, M. and Carlson, J. (1997). Phenomenological Model for Magnetorheological Dampers. Journal of Engineering Mechanics, 123(3), pp.230-238.

Spencer, B. and Nagarajaiah, S. (2003). State of the Art of Structural Control. Journal of Structural Engineering, 129(7), pp.845-856.

Sun, Q., Zhang, L., Zhou, J., and Shi, Q. (2003). Experimental study of the semi‐active control of building structures using the shaking table. Earthquake engineering & structural dynamics, 32(15), 2353-2376.

Symans, M. and Constantinou, M. (1999). Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering Structures, 21(6), pp.469-487.

Taflanidis, A. A., Giaralis, A., & Patsialis, D. (2019). Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures. Journal of the Franklin Institute, 356(14), 7754-7784.

Takewaki, I., Murakami, S., Yoshitomi, S. and Tsuji, M. (2012). Fundamental mechanism of earthquake response reduction in building structures with inertial dampers. Structural Control and Health Monitoring, 19(6), 590-608.

Tanaka, N. and Kikushima, Y. (1992). Impact vibration control using a semi-active damper. Journal of Sound and Vibration, 158(2), pp.277-292

Vidal, M. (2008). Análisis y diseño de estructuras con disipadores de energía metálicos en base a criterios de desempeño. Tesis para optar al título de ingeniero civil en obras civiles, Universidad Austral de Chile.

Villareal Castro, G. y Oviedo Sarmiento, R. (2008). Edificaciones con disipadores de energía. libro premio nacional ANR 2008, Lima, Perú.

Wang, J. Y., Ni, Y. Q., Ko, J. M. and Spencer, B. F. (2002). Semi-active TLCDs using magneto-rheological fluids for vibration mitigation of tall buildings. Advances in Building Technology, Volume1, Elsevier Science Ltd., pp. 537-544.

Warburton, G. B. and Ayorinde, E. O. (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3), 197-217.

Wen, Y., Chen, Z. and Hua, X. (2016). Design and Evaluation of Tuned Inerter-Based Dampers for the Seismic Control of MDOF Structures. Journal of Structural Engineering, ASCE, 2016.

Yalla, S., Kareem, A. and Kantor, J. (2001). Semi-active tuned liquid column dampers for vibration control of structures. Engineering Structures, 23(11), pp.1469-1479.

Yang, G., Spencer, B. F., Carlson, J. D. and Sain, M. K. (2002). Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering structures, 24(3), 309-323.

Yazdi, H., Saberi, H., Saberi, H. and Hatami, F. (2016). Designing optimal tuned mass dampers using improved harmony search algorithm. Advances in Structural Engineering, 19(10), pp.1620-1636.

Yoshimura, T., Nakaminami, K., Kurimoto, M. and Hino, J. (1999). Active suspension of passenger cars using linear and fuzzy-logic controls. Control Engineering Practice, 1999, pp 41-47.

Zemp, R., De la Llera, J. C. and Weber, F. (2012). Control of tuned masses using MR dampers and a new real time feedback signal and physical controller. 15 WCEE, Lisboa, 2012.

Zhang, S. Y., Jiang, J. Z. and Neild, S. (2016). Passive vibration suppression using inerters for a multi-storey building structure. In Journal of Physics: Conference Series (Vol. 744, No. 1, p. 012044).

Zhang, Y., Lewis, T. D., Jiang, J. Z., & Neild, S. (2016). Suppression Using Multiple Inerter-based Devices for a Multi-storey Building Structure. In Proceedings of the 6th European Conference on Structural Control (EACS 2016) European Association for the Control of Structures (EACS).

Zhou, F. L., Tan, P., Liu, Y. and Teng, J. (2012). Hybrid mass dampers for anton Tower. CTBUH Journal, (1), 24-29.

Zhou, Z., Najm, H., Vasconez, R., (2016). Effectiveness of Tuned Mass Dampers in Mitigating Earthquake Ground Motions in Low and Medium Rise Buildings. Journal of Engineering and Architecture, Vol. 4, No. 2, pp. 11-22

Publicado

2022-04-29

Cómo citar

Martinez-Martinez, G. D. J., Blandón-Valencia, J. J., & Lara-Valencia, L. A. (2022). Amortiguadores de masa sintonizada: una revisión general. Revista Politécnica, 18(35), 140–168. https://doi.org/10.33571/rpolitec.v18n35a10

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.