Preparación y Caracterización de Carbones Activados a partir de un Carbón Mineral de la Cuenca del Cesar (Colombia)

Autores/as

  • Lina Mercedes Daza Barranco Universidad del Atlántico
  • Juan Fernando Orrego M. Universidad del Atlántico
  • Jhon Jairo Fernández Hincapie Universidad de Antioquia

DOI:

https://doi.org/10.33571/rpolitec.v14n26a7

Palabras clave:

Carbón activado, carbón bituminoso, activación físico-química, propiedades de adsorción, remoción de colorante, cinética

Resumen

En este trabajo se prepararon carbones activados a partir de un carbón bituminoso, mediante procesos de activación física y química. La activación física con vapor de agua (H2O) se realizó a temperaturas de 700 y 800°C y la activación química utilizando ZnCl2 0.2 N a 600, 700 y 800°C. Los carbones activados se caracterizaron mediante diferentes técnicas, como punto de carga cero (PZC), espectroscopia infrarroja (IR, DRIFT), área superficial y microscopia electrónica de barrido (SEM-EDX). Se obtuvieron carbones activados microporosos con áreas superficiales hasta de 351 m2/g con un volumen de poro de 0.15 cm3/g y un tamaño promedio de poro de 19.4 Å. El carbón activado de mayor área superficial fue apto para la remoción del azul de metileno cuya isoterma de adsorción se ajusta al modelo de Langmuir y la cinética de adsorción se ajusta al modelo pseudo-segundo orden y de difusión intraparticular.

Métricas de Artículo

|Resumen: 671 | HTML: 380 | PDF: 668 | XML: 30 |

Citado por



Citas

Mohan D, Singh KP, Singh VK. Wastewater treatment using low cost activated carbons derived from agricultural byproducts—A case study. Journal of Hazardous Materials. 152, 1045-1053, 2008.

Faur-Brasquet C, Kadirvelu K, Le Cloirec P. Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon. 40, 2387-2392, 2002.

Guedidi H, Reinert L, Soneda Y, Bellakhal N, Duclaux L. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arabian Journal of Chemistry. 10, S3584-S3594, 2017.

Freeman JJ. Active carbon. Journal of Chemical Technology & Biotechnology. 48, 240-241, 1990.

Özkaya B. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials. 129, 158-163, 2006.

Yu S, Wang X, Yao W, Wang J, Ji Y, Ai Y, et al. Macroscopic, Spectroscopic, and Theoretical Investigation for the Interaction of Phenol and Naphthol on Reduced Graphene Oxide. Environmental Science & Technology. 51, 3278-3286, 2017.

Blanco-Martínez DA, Giraldo L, Moreno-Piraján JC. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. Journal of Hazardous Materials. 169, 291-296, 2009.

Peña K, Giraldo L, Moreno JC. Preparación de carbón activado a partir de cáscara de naranja por activación química. Caracterización física y química. Revista Colombiana de Química. 41, 311-323, 2012.

Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon. 42, 83-94, 2004.

Tonucci MC, Gurgel LVA, Aquino SFd. Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Industrial Crops and Products. 74, 111-121, 2015.

Rakić V, Rac V, Krmar M, Otman O, Auroux A. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. Journal of Hazardous Materials. 282, 141-149, 2015.

de Sousa JC, Parra JB, Pajares JA, Pis JJ. Activated carbons from semianthracite by steam activation. Effect of coal preoxidation and burn-off. Studies in Surface Science and Catalysis. 87, 603-612, 1994.

Larsen JW, Green TK, Kovac J. The nature of the macromolecular network structure of bituminous coals. The Journal of Organic Chemistry. 50, 4729-4735, 1985.

Derbyshire F. Vitrinite structure: alterations with rank and processing. Fuel. 70, 276-284, 1991.

Haenel MW. Recent progress in coal structure research. Fuel. 71, 1211-1223, 1992.

Marzec A, Kisielow W. Mechanism of swelling and extraction and coal structure. Fuel. 62, 977-979, 1983.

Shinn JH. From coal to single-stage and two-stage products: A reactive model of coal structure. Fuel. 63, 1187-1196, 1984.

Solache-Ríos MJ, Villalva-Coyote R, Díaz-Nava MdC. Sorption and Desorption of Remazol Yellow by a Fe-Zeolitic Tuff. Journal of the Mexican Chemical Society. 54, 59-68, 2010.

Bofan G, Weizhuang H, Qixiu Z. A study on separation of molybdenum from tungsten by an adsorption process using activated carbon. International Journal of Refractory Metals and Hard Materials. 14, 319-323, 1996.

Sui Q, Huang J, Liu Y, Chang X, Ji G, Deng S, et al. Rapid removal of bisphenol A on highly ordered mesoporous carbon. Journal of Environmental Sciences. 23, 177-182, 2011.

Zhang L, Xu T, Liu X, Zhang Y, Jin H. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. Journal of Hazardous Materials. 197, 389-396, 2011.

Cao N, Darmstadt H, Soutric F, Roy C. Thermogravimetric study on the steam activation of charcoals obtained by vacuum and atmospheric pyrolysis of softwood bark residues. Carbon. 40, 471-479, 2002.

Bandosz TJ, Ania CO. Chapter 4 Surface chemistry of activated carbons and its characterization. Interface Science and Technology. 7, 159-229, 2006.

Menéndez-Díaz JA, Martín-Gullón I. Chapter 1 Types of carbon adsorbents and their production. Interface Science and Technology. 7, 1-47, 2006.

Guo P, Gu Y, Lei Z, Cui Y, Zhao XS. Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors. Microporous and Mesoporous Materials. 156, 176-180, 2012.

Helmich M, Luckas M, Pasel C, Bathen D. Characterization of microporous activated carbons using molecular probe method. Carbon. 74, 22-31, 2014.

Gokulakrishnan N, Pandurangan A, Sinha PK. Removal of Decontaminating Agent from Aqueous Solution Using Microporous and Mesoporous Materials: Activated Carbon as an Effective Adsorbent. Adsorption Science & Technology. 26, 291-302, 2008.

Zhu G-z, Deng X-l, Hou M, Sun K, Zhang Y-p, Li P, et al. Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Processing Technology. 144, 255-261, 2016.

Atkinson JD, Rood MJ. Preparing microporous carbon from solid organic salt precursors using in situ templating and a fixed-bed reactor. Microporous and Mesoporous Materials. 160, 174-181, 2012.

Laine J, Calafat A, labady M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon. 27, 191-195, 1989.

Arampatzidou AC, Deliyanni EA. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A. Journal of Colloid and Interface Science. 466, 101-112, 2016.

Laginhas C, Nabais JMV, Titirici MM. Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation. Microporous and Mesoporous Materials. 226, 125-132, 2016.

Yan XB, Xu T, Chen G, Liu HW, Yang SR. Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films. Carbon. 42, 3103-3108, 2004.

Sugashini S, Begum KMMS. Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(VI) removal. New Carbon Materials. 30, 252-261, 2015.

Díaz-Faes E, Barriocanal C, Díez MA, Alvarez R. Applying TGA parameters in coke quality prediction models. Journal of Analytical and Applied Pyrolysis. 79, 154-160, 2007.

Larsen JW, Gorbaty ML. Coal Structure and Reactivity A2. In: Meyers R, editor. Encyclopedia of Physical Science and Technology (Third Edition). New York: Academic Press, 107-122, 2003.

Solomon PR, Serio MA, Suuberg EM. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Progress in Energy and Combustion Science. 18, 133-220, 1992.

Varma AK. Thermogravimetric investigations in prediction of coking behaviour and coke properties derived from inertinite rich coals. Fuel. 81, 1321-1334, 2002.

Molina-Sabio M, RodRíguez-Reinoso F, Caturla F, Sellés MJ. Porosity in granular carbons activated with phosphoric acid. Carbon. 33, 1105-1113, 1995.

López-González JdD, Moreno-Castilla C, Rodriguez-Ramos I, Rodriguez-Reinoso F. 177. The use of activated carbons as supports for platinum catalysts. Carbon. 22, 224, 1984.

Rodríguez-Reinoso F. Activated Carbon and Adsorption A2 - Buschow, K.H. Jürgen. In: Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P, editors. Encyclopedia of Materials: Science and Technology (Second Edition). Oxford: Elsevier, 22-34, 2001.

Alcañiz-Monge J, Marco-Lozar JP, Lozano-Castelló D. Monolithic Carbon Molecular Sieves from activated bituminous coal impregnated with a slurry of coal tar pitch. Fuel Processing Technology. 95, 67-72, 2012.

Azizian S, Haerifar M, Bashiri H. Adsorption of methyl violet onto granular activated carbon: Equilibrium, kinetics and modeling. Chemical Engineering Journal. 146, 36-41, 2009.

Cheung WH, Szeto YS, McKay G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology. 98, 2897-2904, 2007.

Publicado

2018-08-28

Cómo citar

Daza Barranco, L. M., Orrego M., J. F., & Fernández Hincapie, J. J. (2018). Preparación y Caracterización de Carbones Activados a partir de un Carbón Mineral de la Cuenca del Cesar (Colombia). Revista Politécnica, 14(26), 75–88. https://doi.org/10.33571/rpolitec.v14n26a7

Número

Sección

Artículos