obtaining dynamic model of polymer pyrolysis process making use of thermogravimetric data

Authors

  • Oscar Alexander Bellon Hernandez Universidad Pedagógica y Tecnológica de Colombia UPTC,
  • Efrén de Jesus Muñoz Prieto Universidad Pedagógica y Tecnológica de Colombia UPTC

DOI:

https://doi.org/10.33571/rpolitec.v13n25a4

Keywords:

Thermogravimetry, thermal degradation, polymer, pyrolysis

Abstract

This paper describes a systematic procedure to obtain an alternative dynamic model of Low-density polyethylene (LDPE) of the thermal degradation which is founded on experimental data of thermogravimetric analysis. The dynamic model of the process is presented through a pair of first order differential equations proposed for first time in this work. This explains the procedure to reduce the equation's parameters that describes the thermal degradation equation based on thermogravimetric analysis data. A basic simulation is executed to evaluate the behavior of the pyrolysis process of the polymer which is exposed to the application of a constant thermal power, registering variables of temperature and residual mass. This work constitutes the first phase of a research project whose main objective is the start-up of a control system to regulate the operation of a laboratory-scale pyrolysis plant of municipal plastic waste.

Article Metrics

 Abstract: 1353  HTML (Español (España)): 1433  PDF (Español (España)): 829  XML (Español (España)): 151 

PlumX metrics

Author Biographies

Oscar Alexander Bellon Hernandez, Universidad Pedagógica y Tecnológica de Colombia UPTC,

M.Sc en Ingeniería de Control Industrial, docente tiempo completo Escuela de Ciencias Tecnológicas FESAD, grupo de investigación DANUM,  oscarbellonh@gmail.com. Universidad Pedagógica y Tecnológica de Colombia UPTC, Tunja, Colombia.

Efrén de Jesus Muñoz Prieto, Universidad Pedagógica y Tecnológica de Colombia UPTC

PhD Físico Química de Polímeros, docente de planta Facultad de Ciencias, grupo de investigación DANUM, efren17@gmail.com

Universidad Pedagógica y Tecnológica de Colombia UPTC, Tunja, Colombia.

References

M. Sharon y M. Sharon, Carbon Nano Forms and Applications. McGraw-Hill, 2010.

N. Patni et al., “Alternate Strategies for Conversion of Waste Plastic to Fuels, Alternate Strategies for Conversion of Waste Plastic to Fuels”, Int. Sch. Res. Not. Int. Sch. Res. Not., vol. 2013, 2013, p. e902053, may 2013.

“Plastics—Materials and Processing Technology - Access Engineering from McGraw-Hill”. [En línea]. Disponible en: about:reader?url=http%3A%2F%2Fbiblio.uptc.edu.co%3A2068%2Fbrowse%2Fpolymer-science-and-technology-plastics-rubbers-blends-and-composites-third-edition%2Fc9780070707047ch08%3Fq%3Dexpanded%2Bpolystyrene%23c9780070707047ch08lev1sec06. [Consultado: 24-nov-2015].

J. D. Menczel y R. B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications. John Wiley & Sons, 2014.

X. E. Castells y E. V. García, La pirolisis: Tratamiento y valorizacion energética de residuos. Ediciones Díaz de Santos, 2012.

K. Pielichowski y J. Njuguna, Thermal Degradation of Polymeric Materials. Shrewsbury, GBR: Smithers Rapra, 2005.

H. F. Mark, Encyclopedia of Polymer Science and Technology, Concise. John Wiley & Sons, 2013.

S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, y M. K. Aroua, “Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste”, Energy Convers. Manag., vol. 148, pp. 925–934, sep. 2017.

M. Syamsiro et al., “Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors”, Energy Procedia, vol. 47, pp. 180–188, 2014.

A. Fråne et al., Collection & recycling of plastic waste: Improvements in existing collection and recycling systems in the Nordic countries. Nordic Council of Ministers, 2014.

R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, y A. S. Nizami, “Effect of plastic waste types on pyrolysis liquid oil”, Int. Biodeterior. Biodegrad., vol. 119, pp. 239–252, abr. 2017.

N. Miskolczi y R. Nagy, “Hydrocarbons obtained by waste plastic pyrolysis: Comparative analysis of decomposition described by different kinetic models”, Fuel Process. Technol., vol. 104, pp. 96–104, dic. 2012.

J. Bruchmüller, B. G. M. van Wachem, S. Gu, K. H. Luo, y R. C. Brown, “Modeling the thermochemical degradation of biomass inside a fast pyrolysis fluidized bed reactor”, AIChE J., vol. 58, núm. 10, pp. 3030–3042, oct. 2012.

Z. Jin, D. Chen, L. Yin, Y. Hu, H. Zhu, y L. Hong, “Molten waste plastic pyrolysis in a vertical falling film reactor and the influence of temperature on the pyrolysis products”, Chin. J. Chem. Eng., ago. 2017.

C. G. Mothé y I. C. de Miranda, “Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods”, J. Therm. Anal. Calorim., vol. 113, núm. 2, pp. 497–505, abr. 2013.

C. Trapp, M. Cady, y C. Giunta, Students Solutions Manual to Accompany Physical Chemistry: Quanta, Matter, and Change 2e. OUP Oxford, 2013.

S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes. Springer, 2015.

D. A. Skoog, S. R. Crouch, y F. J. Holler, Principios de analisis instrumental / Principles of Instrumental Analysis. Cengage Learning Latin America, 2008.

S. G. Ruiz, M. I. S. Alonso, y D. P. Quintanilla, Analisis Instrumental. Netbiblo, 2009.

“Energía de Activación y Velocidad de Degradación de una Bolsa Biodegradable”. [En línea]. Disponible en: http://www.feriadelasciencias.unam.mx/anteriores/feria21/feria194_01_energia_de_activacion_y_velocidad_de_degradacion_d.pdf. [Consultado: 19-may-2016].

G. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. Elsevier, 2014.

Published

2017-09-08

How to Cite

Bellon Hernandez, O. A., & Muñoz Prieto, E. de J. (2017). obtaining dynamic model of polymer pyrolysis process making use of thermogravimetric data. Revista Politécnica, 13(25), 53–64. https://doi.org/10.33571/rpolitec.v13n25a4

Issue

Section

Articles