Aleaciones metálicas para aplicaciones ortopédicas: una revisión sobre su respuesta al estrés fisiológico y a los procesos de corrosión

  • Katherine Ríos-Puerta Ingeniería Biomédica, Facultad Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Calle 73 No 76A-354 Vía al Volador, Medellín, Colombia https://orcid.org/0000-0003-3284-2053
  • Omar Darío Gutiérrez-Florez Grupo de Química Básica, Aplicada y Ambiente, Facultad Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Calle 73 No 76A-354 Vía al Volador, Medellín 050034, Colombia https://orcid.org/0000-0003-2955-6224
Palabras clave: aleaciones metálicas, biocompatible, corrosión, ortopedia

Resumen

El campo de los biomateriales y sus aplicaciones contribuyen significativamente a la salud y calidad de vida de las personas. Aunque existen varios grupos de biomateriales como cerámicos, polímeros, metales y todos en un determinado porcentaje se utilizan para diferentes procedimientos con objetivos específicos, este artículo de revisión se centra en los metales y sus aleaciones, la resistencia de estos a la corrosión en un entorno biológico y la protección contra el estrés fisiológico. Para esta revisión se seleccionaron artículos que permiten describir dichos aspectos de las aleaciones metálicas utilizadas en aplicaciones ortopédicas partiendo de una detallada búsqueda electrónica, a partir de ello, se concluye que la resistencia a la corrosión y el estrés fisiológico son dos aspectos tan neurálgicos que muchas de las investigaciones realizadas tienen como objetivo mejorarlos garantizando el éxito de la osteosíntesis y la recuperación satisfactoria del paciente.

The field of biomaterials and their applications contribute significantly to the health and quality of life of people. Although there are several groups of biomaterials such as ceramics, polymers, metals and all of them in a certain percentage are used for different procedures with specific objectives, this review article focuses on metals and their alloys, their resistance to corrosion in a biological environment and protection against physiological stress. For this review, articles were selected to describe these aspects of metal alloys used in orthopedic applications based on a detailed electronic search. From this, it is concluded that resistance to corrosion and physiological stress are two aspects so crucial that many of the researches carried out aim to improve them to ensure the success of osteosynthesis and the satisfactory recovery of the patient.

Citas

L. Ghasemi-Mobarakeh, D. Kolahreez, S. Ramakrishna, and D. Williams, “Key terminology in biomaterials and biocompatibility,” Current Opinion in Biomedical Engineering, vol. 10, pp. 45–50, 2019, doi: 10.1016/j.cobme.2019.02.004.

M. Saini, “Implant biomaterials: A comprehensive review,” World Journal of Clinical Cases, vol. 3, no. 1, 2015, doi: 10.12998/wjcc.v3.i1.52.

J. Black and G. Hastings, “Handbook of biomaterial properties,” 2013, Accessed: Jul. 18, 2021. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=EWPlBwAAQBAJ&oi=fnd&pg=PR13&ots=KmbPU9iVa6&sig=OaO6u1NxOxPuXYA2QHVTiorLvLA

Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering R: Reports, vol. 87, pp. 1–57, 2015, doi: 10.1016/j.mser.2014.10.001.

“Functionally assembled metal platform as lego-like module system for enhanced mechanical tunability and biomolecules delivery - ScienceDirect.” https://www-sciencedirect-com.itm.elogim.com:2443/science/article/pii/S0264127521003932?via%3Dihub#b0030 (accessed Jul. 09, 2021).

M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, vol. 19, no. 18, pp. 1621–1639, Sep. 1998, doi: 10.1016/S0142-9612(97)00146-4.

M. Niinomi, M. N.-I. journal of biomaterials, and undefined 2011, “Titanium-based biomaterials for preventing stress shielding between implant devices and bone,” hindawi.com, Accessed: Jul. 09, 2021. [Online]. Available: https://www.hindawi.com/journals/ijbm/2011/836587/

B. Moyen, P. L. Jr, … E. W.-T. J. of bone, and undefined 1978, “Effects on intact femora of dogs of the application and removal of metal plates. A metabolic and structural study comparing stiffer and more flexible plates.,” europepmc.org, Accessed: Jul. 18, 2021. [Online]. Available: https://europepmc.org/article/med/100500

U. HK and F. M, “The effects of metal plates on post-traumatic remodelling and bone mass,” https://doi.org/10.1302/0301-620X.65B1.6822605, vol. 65, no. 1, pp. 66–71, Jan. 1983, doi: 10.1302/0301-620X.65B1.6822605.

S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials: a review,” Composites Science and Technology, vol. 61, no. 9, pp. 1189–1224, Jul. 2001, doi: 10.1016/S0266-3538(00)00241-4.

D. W. Y. Toong et al., “Bioresorbable metals in cardiovascular stents: Material insights and progress,” Materialia, vol. 12, p. 100727, Aug. 2020, doi: 10.1016/J.MTLA.2020.100727.

N. S. Manam et al., “Study of corrosion in biocompatible metals for implants: A review,” Journal of Alloys and Compounds, vol. 701. Elsevier Ltd, pp. 698–715, Apr. 15, 2017. doi: 10.1016/j.jallcom.2017.01.196.

D. Wise, D. Trantolo, K. Lewandrowski, and J. Gresser, “Biomaterials engineering and devices: human applications,” 2000, Accessed: Jul. 16, 2021. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-1-59259-196-1.pdf

B. Raton, L. New, Y. Washington, J. B. Park, and J. D. Bronzino, “Biomaterials : Principles and Applications,” Aug. 2002, doi: 10.1201/9781420040036.

Z. Tang et al., “A materials-science perspective on tackling COVID-19,” Nature Reviews Materials 2020 5:11, vol. 5, no. 11, pp. 847–860, Oct. 2020, doi: 10.1038/s41578-020-00247-y.

K. Wang, “The use of titanium for medical applications in the USA,” Materials Science and Engineering: A, vol. 213, no. 1–2, pp. 134–137, Aug. 1996, doi: 10.1016/0921-5093(96)10243-4.

F. M. Chen and X. Liu, “Advancing biomaterials of human origin for tissue engineering,” Progress in Polymer Science, vol. 53, pp. 86–168, Feb. 2016, doi: 10.1016/J.PROGPOLYMSCI.2015.02.004.

D. F. Williams, “On the nature of biomaterials,” Biomaterials, vol. 30, no. 30, pp. 5897–5909, 2009, doi: 10.1016/j.biomaterials.2009.07.027.

M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Progress in Materials Science, vol. 54, no. 3, pp. 397–425, May 2009, doi: 10.1016/J.PMATSCI.2008.06.004.

L. H.-J. of the american ceramic society and undefined 1991, “Bioceramics: from concept to clinic,” Wiley Online Library, Accessed: Jul. 18, 2021. [Online]. Available: https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1991.tb07132.x

“Progress in organic coatings,” Progress in Organic Coatings, vol. 45, no. 2–3. 2002.

“Prótesis de cadera - Qué es, causas, síntomas, tratamiento y consejos | FisioOnline.” https://www.fisioterapia-online.com/protesis-de-cadera-que-es-causas-sintomas-diagnostico-tratamiento (accessed Aug. 10, 2021).

P. Christel, L. Claes, and S. A. Brown, “Carbon-Reinforced Composites in Orthopedic Surgery,” High Performance Biomaterials, pp. 497–518, Nov. 2018, doi: 10.1201/9780203752029-32/CARBON-REINFORCED-COMPOSITES-ORTHOPEDIC-SURGERY-CHRISTEL-CLAES-BROWN.

E. Schneider, C. Kinast, J. E.-… and related research, and undefined 1989, “A comparative study of the initial stability of cementless hip prostheses.,” europepmc.org, Accessed: Jul. 18, 2021. [Online]. Available: https://europepmc.org/article/med/2805480

R. Huiskes, “Some Fundamental Aspects of Human Joint Replacement: Analyses of Stresses and Heat Conduction in Bone-Prosthesis Structures,” http://dx.doi.org/10.3109/ort.1980.51.suppl-185.01, vol. 51, no. Suppl. 185, 2014, doi: 10.3109/ORT.1980.51.SUPPL-185.01.

S. Cleemput, S. E. F. Huys, R. Cleymaet, W. Cools, and M. Y. Mommaerts, “Additively manufactured titanium scaffolds and osteointegration - meta-analyses and moderator-analyses of in vivo biomechanical testing,” Biomaterials Research 2021 25:1, vol. 25, no. 1, pp. 1–17, Jun. 2021, doi: 10.1186/S40824-021-00216-8.

D. R. Sumner, T. M. Turner, R. Igloria, R. M. Urban, and J. O. Galante, “Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness,” Journal of Biomechanics, vol. 31, no. 10, pp. 909–917, Oct. 1998, doi: 10.1016/S0021-9290(98)00096-7.

D. F. Williams, “Leading Opinion On the mechanisms of biocompatibility q,” 2008, doi: 10.1016/j.biomaterials.2008.04.023.

J. Porter, J. V. F.-G. dentistry, and undefined 2005, “Success or failure of dental implants? A literature review with treatment considerations.,” europepmc.org, Accessed: Aug. 09, 2021. [Online]. Available: https://europepmc.org/article/med/16366052

D. Petsch and F. B. Anspach, “Endotoxin removal from protein solutions,” Journal of Biotechnology, vol. 76, no. 2–3, pp. 97–119, Jan. 2000, doi: 10.1016/S0168-1656(99)00185-6.

W. A. Lynn and D. T. Golenbock, “Lipopolysaccharide antagonists,” Immunology Today, vol. 13, no. 7, pp. 271–276, Jan. 1992, doi: 10.1016/0167-5699(92)90009-V.

Y. An, B. Blair, K. Martin, R. F.-H. of bacterial adhesion, and undefined 2000, “Macromolecule surface coating for preventing bacterial adhesion,” Springer, Accessed: Aug. 09, 2021. [Online]. Available: https://link.springer.com/chapter/10.1007/978-1-59259-224-1_39

L. Montanaro, D. Campoccia, and C. R. Arciola, “Advancements in molecular epidemiology of implant infections and future perspectives,” Biomaterials, vol. 28, no. 34, pp. 5155–5168, Dec. 2007, doi: 10.1016/J.BIOMATERIALS.2007.08.003.

N. J. Hallab, S. Anderson, T. Stafford, T. Glant, and J. J. Jacobs, “Lymphocyte responses in patients with total hip arthroplasty,” Journal of Orthopaedic Research, vol. 23, no. 2, pp. 384–391, Mar. 2005, doi: 10.1016/J.ORTHRES.2004.09.001.

A. Sargeant and T. Goswami, “Hip implants: Paper V. Physiological effects,” 2004, doi: 10.1016/j.matdes.2004.10.028.

V. M, M. R, B. M, B. M, and C. L, “Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration,” Journal of biomechanics, vol. 33, no. 12, pp. 1611–1618, Dec. 2000, doi: 10.1016/S0021-9290(00)00140-8.

H. Grandin, S. Berner, M. D.- Materials, and undefined 2012, “A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants,” mdpi.com, vol. 5, pp. 1348–1360, 2012, doi: 10.3390/ma5081348.

T. Albrektsson, P.-I. Brånemark, H.-A. Hansson, and J. Lindström, “Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man,” http://dx.doi.org/10.3109/17453678108991776, vol. 52, no. 2, pp. 155–170, 2009, doi: 10.3109/17453678108991776.

“Additive Manufacturing Technique - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/engineering/additive-manufacturing-technique (accessed Aug. 10, 2021).

“Fabricación aditiva de aleación Ti6Al4V mediante fusión por haz de electrones para el desarrollo de implantes para la industria biomédica | Lector mejorado de Elsevier.” https://reader.elsevier.com/reader/sd/pii/S2405844021009956?token=38300A54EDAB383A7CEB170DED2CB2745B602CBC3ACA3932CB0DE80101BE20CB0D4A8BE7B646FF08399E3AF47E56EA1A&originRegion=us-east-1&originCreation=20210720224643 (accessed Jul. 19, 2021).

C. Culmone, G. Smit, P. B.-A. Manufacturing, and undefined 2019, “Additive manufacturing of medical instruments: A state-of-the-art review,” Elsevier, 2019, doi: 10.1016/j.addma.2019.03.015.

X. Li, C. Wang, W. Zhang, and Y. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process,” Materials Letters, vol. 63, no. 3–4, pp. 403–405, Feb. 2009, doi: 10.1016/J.MATLET.2008.10.065.

S. Sing, J. An, … W. Y.-J. of O., and undefined 2016, “Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs,” Wiley Online Library, vol. 34, no. 3, pp. 369–385, Mar. 2016, doi: 10.1002/jor.23075.

J. Ott, W. T. Jr, E. Butcher, 220,444 L Kironn - US Patent 10, and undefined 2019, “Additive manufactured conglomerated powder removal from internal passages,” Google Patents, vol. 12, 2014, Accessed: Aug. 10, 2021. [Online]. Available: https://patents.google.com/patent/US10220444B2/en

M. Islam, … M. H.-A. P., and undefined 2019, “Additive manufacturing and hot fire testing of complex injectors with integrated temperature sensors,” asmedigitalcollection.asme.org, 2019, Accessed: Aug. 10, 2021. [Online]. Available: https://asmedigitalcollection.asme.org/POWER/proceedings-abstract/POWER2019/1071113

Y. Zhang et al., “Additive Manufacturing of Metallic Materials: A Review,” Journal of Materials Engineering and Performance 2017 27:1, vol. 27, no. 1, pp. 1–13, May 2017, doi: 10.1007/S11665-017-2747-Y.

D. S. Sodhi, “Nonsimultaneous crushing during edge indentation of freshwater ice sheets,” Cold Regions Science and Technology, vol. 27, no. 3, pp. 179–195, Jun. 1998, doi: 10.1016/S0165-232X(98)00010-X.

T. Obikawa, M. Yoshino, J. S.-J. of M. Processing, and undefined 1999, “Sheet steel lamination for rapid manufacturing,” Elsevier, Accessed: Jul. 19, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924013699000278

D. W.-A. materials & processes and undefined 2003, “ULTRASONIC CONSOLIDATION OF ALUMINUM TOOLING.,” elibrary.ru, Accessed: Jul. 19, 2021. [Online]. Available: https://elibrary.ru/item.asp?id=4680496

O. Harrysson, … O. C.-M. S. and, and undefined 2008, “Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology,” Elsevier, Accessed: Aug. 10, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0928493107000501

R. Yan et al., “Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold,” nature.com, Accessed: Aug. 10, 2021. [Online]. Available: https://www.nature.com/articles/s41598-017-15564-6

A. Mazzoli, M. Germani, R. R.-M. & Design, and undefined 2009, “Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment,” Elsevier, 2008, doi: 10.1016/j.matdes.2008.11.013.

“Scopus - Document details - Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry.” https://www-scopus-com.itm.elogim.com:2443/record/display.uri?eid=2-s2.0-85105291711&origin=resultslist&sort=plf-f&src=s&st1=+metals&nlo=&nlr=&nls=&sid=6d403948918dec5dc8e575426550499b&sot=b&sdt=cl&cluster=scofreetoread%2c%22all%22%2ct&sl=22&s=TITLE-ABS-KEY%28+metals%29&ref=%28%28processing%29%29+AND+%28biocompatible%29&relpos=73&citeCnt=0&searchTerm= (accessed Jul. 19, 2021).

S. Shabalovskaya, J. Anderegg, and J. van Humbeeck, “Critical overview of Nitinol surfaces and their modifications for medical applications,” Acta Biomaterialia, vol. 4, no. 3, pp. 447–467, May 2008, doi: 10.1016/J.ACTBIO.2008.01.013.

M. Niinomi, M. Nakai, and J. Hieda, “Development of new metallic alloys for biomedical applications,” Acta Biomaterialia, vol. 8, no. 11, pp. 3888–3903, Nov. 2012, doi: 10.1016/J.ACTBIO.2012.06.037.

Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering: R: Reports, vol. 87, pp. 1–57, Jan. 2015, doi: 10.1016/J.MSER.2014.10.001.

I. Kirilova, M. Sadovoy, … V. P.-H., and undefined 2013, “Ceramic and osteoceramic implants: upcoming trends,” spinesurgery.ru, Accessed: Aug. 10, 2021. [Online]. Available: https://www.spinesurgery.ru/jour/article/view/668?locale=en_US

M. Andreiotelli, H. J. Wenz, and R. J. Kohal, “Are ceramic implants a viable alternative to titanium implants? A systematic literature review,” Clinical Oral Implants Research, vol. 20, no. SUPPL. 4, pp. 32–47, Sep. 2009, doi: 10.1111/J.1600-0501.2009.01785.X.

S. v. Dorozhkin, “Bioceramics of calcium orthophosphates,” Biomaterials, vol. 31, no. 7, pp. 1465–1485, Mar. 2010, doi: 10.1016/J.BIOMATERIALS.2009.11.050.

V. Bayazit, M. Bayazit, E. B.-D. J. of N. and, and undefined 2010, “Evaluation of bioceramic materials in biology and medicine,” chalcogen.ro, vol. 7, no. 3, pp. 267–278, 2010, Accessed: Aug. 10, 2021. [Online]. Available: https://www.chalcogen.ro/267_Bayazit.pdf

R. H. Khonsari, P. Berthier, T. Rouillon, J. P. Perrin, and P. Corre, “Severe infectious complications after PEEK-derived implant placement: Report of three cases,” Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, vol. 26, no. 4, pp. 477–482, Oct. 2014, doi: 10.1016/J.AJOMS.2013.04.006.

D. Hak, C. Mauffrey, D. Seligson, and B. Lindeque, “Uso de implantes compuestos reforzados con fibra de carbono en cirugía ortopédica,” Ortopedia, vol. 37, no. 12, pp. 825–830, Dec. 2014, doi: 10.3928/01477447-20141124-05.

D. B. McGregor, R. A. Baan, C. Partensky, J. M. Rice, and J. D. Wilbourn, “Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies — a report of an IARC Monographs Programme Meeting,” European Journal of Cancer, vol. 36, no. 3, pp. 307–313, Feb. 2000, doi: 10.1016/S0959-8049(99)00312-3.

J. Ling et al., “High-throughput development and applications of the compositional mechanical property map of the β titanium alloys,” Elsevier, 2021, doi: 10.1016/j.jmst.2020.07.035.

H. Kabir, K. Munir, C. Wen, Y. L.-B. materials, and undefined 2021, “Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives,” Elsevier, Accessed: Jul. 19, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2452199X20302334

C. A. Jones, L. A. Beaupre, D. W. C. Johnston, and M. E. Suarez-Almazor, “Total Joint Arthroplasties: Current Concepts of Patient Outcomes after Surgery”, doi: 10.1016/j.cger.2005.02.005.

T. Jinno, V. Goldberg, … D. D.-J. of B., and undefined 1998, “Osseointegration of surface‐blasted implants made of titanium alloy and cobalt–chromium alloy in a rabbit intramedullary model,” Wiley Online Library, Accessed: Jul. 17, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-4636(199810)42:1%3C20::AID-JBM4%3E3.0.CO;2-Q

D. A. Puleo and M. v Thomas, “Implant Surfaces”, doi: 10.1016/j.cden.2006.03.001.

“Lossdorfer: Microrough implant surface topographies... - Google Académico.” https://scholar.google.com/scholar_lookup?title=Microrough%20implant%20surface%20topographies%20increase%20osteogenesis%20by%20reducing%20osteoclast%20formation%20and%20activity&publication_year=2004&author=S.%20Lossdorfer&author=Z.%20Schwartz&author=L.%20Wang&author=C.H.%20Lohmann&author=J.D.%20Turner&author=M.%20Wieland (accessed Jul. 17, 2021).

“Black: Orthopaedic biomaterials in research and practice,... - Google Académico.” https://scholar.google.com/scholar_lookup?title=Orthopaedic%20Biomaterials%20in%20Research%20and%20Practice&publication_year=1988&author=J%20Black (accessed Jul. 18, 2021).

Y. C.-B. orthopaedic biomechanics and undefined 1997, “Biomechanics of fracture fixation,” ci.nii.ac.jp, Accessed: Jul. 18, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/10020762046/

J. R. Coates, “Intervertebral Disk Disease,” Veterinary Clinics of North America: Small Animal Practice, vol. 30, no. 1, pp. 77–110, Jan. 2000, doi: 10.1016/S0195-5616(00)50004-7.

“Valdevit: Methods for mechanical testing of spinal... - Google Académico.” https://scholar.google.com/scholar_lookup?title=Methods%20for%20mechanical%20testing%20of%20spinal%20constructs&publication_year=1996&author=A.D.C%20Valdevit&author=N%20Inoue&author=B.A%20MacWilliams&author=L.L%20Anderson (accessed Jul. 19, 2021).

“D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen,... - Google Académico.” https://scholar.google.com/scholar?q=D.M.%20Brunette,%20P.%20Tengvall,%20M.%20Textor,%20P.%20Thomsen,%20,%20Titanium%20in%20medicine.%202001,%20Springer,%20Berlin,%202001,%20doi:%2010.1007978-3-642-56486-4. (accessed Aug. 10, 2021).

R. Mahabir and C. Butler, “Stabilization of the Chest Wall: Autologous and Alloplastic Reconstructions,” Seminars in Plastic Surgery, vol. 25, no. 01, pp. 034–042, Feb. 2011, doi: 10.1055/S-0031-1275169.

Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering: R: Reports, vol. 87, pp. 1–57, Jan. 2015, doi: 10.1016/J.MSER.2014.10.001.

N. Hallab, K. Merritt, J. J.- JBJS, and undefined 2001, “Metal sensitivity in patients with orthopaedic implants,” journals.lww.com, vol. 83, p. 428, 2001, Accessed: Aug. 10, 2021. [Online]. Available: https://journals.lww.com/jbjsjournal/fulltext/2001/03000/metal_sensitivity_in_patients_with_orthopaedic.17.aspx

J. Berthet, L. Canaud, T. D’Annoville, … P. A.-T. A. of thoracic, and undefined 2011, “Titanium plates and Dualmesh: a modern combination for reconstructing very large chest wall defects,” Elsevier, Accessed: Aug. 10, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0003497511004383

E. Ingham, J. F.- Biomaterials, and undefined 2005, “The role of macrophages in osteolysis of total joint replacement,” Elsevier, Accessed: Aug. 10, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S014296120400393X

P. Purdue, P. Koulouvaris, … H. P.-C. O., and undefined 2007, “The cellular and molecular biology of periprosthetic osteolysis,” journals.lww.com, Accessed: Aug. 10, 2021. [Online]. Available: https://journals.lww.com/clinorthop/Fulltext/2007/01000/The_Cellular_and_Molecular_Biology_of.41.aspx

E. Rombolá, “Evaluación radiológica de los elementos de osteosíntesis en el miembro superior,” Revista Argentina de Radiología, vol. 81, no. 4, pp. 285–295, Oct. 2017, doi: 10.1016/J.RARD.2016.11.007.

Q. Wang, Y. Zhang, B. Li, and L. Chen, “Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin–nanohydroxyapatite scaffold for vascularized bone regeneration,” Journal of Materials Chemistry B, vol. 5, no. 33, pp. 6963–6972, Aug. 2017, doi: 10.1039/C7TB00949F.

C. Laurencin, Y. Khan, and S. F. El-Amin, “Bone graft substitutes,” http://dx.doi.org/10.1586/17434440.3.1.49, vol. 3, no. 1, pp. 49–57, Jan. 2014, doi: 10.1586/17434440.3.1.49.

N. Taniguchi et al., “Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment,” 2015, doi: 10.1016/j.msec.2015.10.069.

T. Schouman, M. Schmitt, C. Adam, G. Dubois, and P. Rouch, “Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 59, pp. 484–496, Jun. 2016, doi: 10.1016/J.JMBBM.2016.02.036.

V. de Viteri, E. F.-T.-F. and, and undefined 2013, “Titanium and titanium alloys as biomaterials,” books.google.com, Accessed: Aug. 11, 2021. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=VGOfDwAAQBAJ&oi=fnd&pg=PA155&ots=-VcvKfPP89&sig=LVawq5jgJTRz1KvNTZsuUZ0cSI4

V. Goriainov, R. Cook, J. Latham, D. D.-A. biomaterialia, and undefined 2014, “Bone and metal: an orthopaedic perspective on osseointegration of metals,” Elsevier, Accessed: Aug. 11, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1742706114002517

M. Thieme, K. Wieters, … F. B.-J. of materials, and undefined 2001, “Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants,” Springer, vol. 12, no. 3, pp. 225–231, 2001, doi: 10.1023/A:1008958914818.

A. de L. Rodríguez López et al., “Preventing S. aureus biofilm formation on titanium surfaces by the release of antimicrobial β-peptides from polyelectrolyte multilayers,” Acta Biomaterialia, vol. 93, pp. 50–62, Jul. 2019, doi: 10.1016/J.ACTBIO.2019.02.047.

S. Spriano, S. Yamaguchi, F. Baino, and S. Ferraris, “A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination,” Acta Biomaterialia, vol. 79, pp. 1–22, Oct. 2018, doi: 10.1016/J.ACTBIO.2018.08.013.

Y. Chen et al., “Manufacturing of graded titanium scaffolds using a novel space holder technique,” Bioactive Materials, vol. 2, no. 4, pp. 248–252, Dec. 2017, doi: 10.1016/J.BIOACTMAT.2017.07.001.

T. v. Basova, E. S. Vikulova, S. I. Dorovskikh, A. Hassan, and N. B. Morozova, “The use of noble metal coatings and nanoparticles for the modification of medical implant materials,” Materials & Design, vol. 204, p. 109672, Jun. 2021, doi: 10.1016/J.MATDES.2021.109672.

N. Patel, P. G.-I. J. of E. T. and, and undefined 2012, “A review on biomaterials: scope, applications & human anatomy significance,” Citeseer, vol. 2, no. 4, 2012, Accessed: Jul. 18, 2021. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.7368&rep=rep1&type=pdf

P. Hale, E. Smith, and A. Klein, “An Introduction to a New Family of Palladium Based Medical Alloys,” 2009, Accessed: Jul. 18, 2021. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=LqQaGXFDdLsC&oi=fnd&pg=PA69&dq=P.+Hale,+E.+Smith,+A.+Klein,+et+al.,+An+introduction+to+a+new+family+of+palladium+based+medical+alloys,+&ots=_SShPx2jOP&sig=_xL6G8QIEgKql1_2skRJRfecpYQ

C. Marambio-Jones, E. H.-J. of nanoparticle research, and undefined 2010, “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment,” Springer, vol. 12, no. 5, pp. 1531–1551, Jun. 2010, doi: 10.1007/s11051-010-9900-y.

S. Chernousova and M. Epple, “Silver as antibacterial agent: Ion, nanoparticle, and metal,” Angewandte Chemie - International Edition, vol. 52, no. 6, pp. 1636–1653, Feb. 2013, doi: 10.1002/ANIE.201205923.

T. Schmidt-Braekling, … A. S.-E. J., and undefined 2017, “Silver-coated megaprostheses: review of the literature.,” search.ebscohost.com, Accessed: Jul. 18, 2021. [Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16338065&AN=122654598&h=o30uRNsh%2Frob8RSPdy6Elmg3GWLQfQ3czDUcfPTtAsGwvPVgccdWz3NbxlqEXKF1OXBO9lV74YI69qrs9g%2BYOw%3D%3D&crl=c

L. Y. Qing, R. Li, G. Liu, … Y. Z.-I. journal, and undefined 2018, “Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies,” ncbi.nlm.nih.gov, Accessed: Jul. 19, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5993028/

P. Lam, R. Wong, K. Lam, … L. H.-C., and undefined 2020, “The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review,” Elsevier, Accessed: Aug. 11, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0009279719313626

E. T. K. Demann, P. S. Stein, and J. E. Haubenreich, “Gold as an Implant in Medicine and Dentistry,” Journal of Long-Term Effects of Medical Implants, vol. 15, no. 6, pp. 687–698, 2005, doi: 10.1615/JLONGTERMEFFMEDIMPLANTS.V15.I6.100.

S. Ferraris, S. S.-M. S. and E. C, and undefined 2016, “Antibacterial titanium surfaces for medical implants,” Elsevier, Accessed: Jul. 19, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0928493115306755

A. Avellan et al., “Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome,” Nature Nanotechnology 2018 13:11, vol. 13, no. 11, pp. 1072–1077, Aug. 2018, doi: 10.1038/s41565-018-0231-y.

H. Johnston, G. Hutchison, … F. C.-C. reviews in, and undefined 2010, “A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity,” Taylor & Francis, vol. 40, no. 4, pp. 328–346, Apr. 2014, doi: 10.3109/10408440903453074.

X. Gu et al., “Preparation and antibacterial properties of gold nanoparticles: a review,” Springer, vol. 19, no. 1, p. 21567014, Feb. 2020, doi: 10.1007/s10311-020-01071-0.

Publicado
2022-04-26
Cómo citar
Ríos-Puerta, K., & Gutiérrez-Florez, O. D. (2022). Aleaciones metálicas para aplicaciones ortopédicas: una revisión sobre su respuesta al estrés fisiológico y a los procesos de corrosión. Revista Politécnica, 18(35), 24-39. https://doi.org/10.33571/rpolitec.v18n35a2

Métricas de Artículo

Resumen : 43   PDF : 22  HTML : 10