Position estimation in mobile robots using particle filters

Authors

  • Juan Diego Cárdenas Cartagena Universidad EIA. Grupo GIBEC
  • Víctor Hugo Jaramillo Velásquez Universidad EIA

DOI:

https://doi.org/10.33571/rpolitec.v13n25a8

Keywords:

Mobile robot, particle filter, Monte Carlo methods, stochastic filter, Bayesian filter

Abstract

This works presents an approach to solve the problem of controlling differential motion mobile robots with odometry techniques, trajectory tracking algorithms based on A*, control by pure persecution and state estimation using particles filters to calculate the robot location. The paper is accompanied by a series of simulation results that verify the proper functioning of the proposed methodology.

Article Metrics

 Abstract: 1043  HTML (Español (España)): 436  PDF (Español (España)): 510  XML (Español (España)): 44 

PlumX metrics

Author Biographies

Juan Diego Cárdenas Cartagena, Universidad EIA. Grupo GIBEC

Ingeniero Mecatrónico. Grupo GIBEC, correo electrónico: juan.cardenas@eia.edu.co.

Universidad EIA, km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Zip: 055428. 

Víctor Hugo Jaramillo Velásquez, Universidad EIA

Ph.D. en Ingeniería Mecatrónica. Grupo MAPA, correo electrónico: victor.jaramillo92@eia.edu.co.

Universidad EIA, km 2 + 200 Vía al Aeropuerto José María Córdova Envigado, Colombia. Zip: 055428. 

References

Dudek, G. y Jenkin, M., Computational principles of mobile robotics. Cambridge University Press, 2010.

Siegwart, R., Nourbakhsh, I. R., y Scaramuzza, D. Introduction to autonomous mobile robots. MIT press, 2011.

García Caicedo, J. M. Navegación de un robot móvil sobre terreno irregular con contacto de su brazo con el suelo [Master Thesis]. Medellín, Colombia: Universidad de Antioquia, 2012.

Rekleitis, I. M. A particle filter tutorial for mobile robot localization. Tech. Rep. TR-CIM- 04-02. Montreal, Canada. Centre for Intelligent Machines, McGill University, 2004.

Chen, Z. Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 182 (1), 1-69, 2003.

Kalman, R. E. A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82, 35 - 45, 1960.

Kalman, R. E. y Bucy, R. S.. New results in linear filtering and prediction theory. Journal of basic engineering, 83, 95 - 108, 1961.

Simon, D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.

Gordon, N. J., Salmond, D. J., y Smith, A. F. Novel approach to nonlinear/non-gaussian bayesian state estimation. IEEE Proceedings Radar and Signal Processing, 140, 107–113, 1993.

Doucet, A. y Johansen, A. M. A Tutorial on Particle filtering and smoothing: Fiteen years later. The Oxford handbook of nonlinear filtering, 656–705, 2011.

Arulampalam, M. S., Maskell, S., N. Gordon, y Clapp, T. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions Signal Processing, 50, 174 - 188, 2002.

R. R. Luque. Localización multirrobot basada en filtro de partículas [Ph.D. Thesis]. Madrid España: Universidad de Alcalá, 2006.

Cook, G. Mobile robots: navigation, control and remote sensing. John Wiley & Sons, 2011.

S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

López, D. G., Aldeguer, R. R., & Ruiz, F. E. Aplicación del muestreo bayesiano en robots móviles: estrategias para localización y estimación de mapas del entorno. Alicante, España: Universidad de Alicante, 1999.

Lee, D. Curso de Coursera: Robotics, Estimation and Learning. Disponible en https://www.coursera.org [consultado el 26 de marzo de 2017].

Thrun, S. Particle Filters in Robotics. Proceedings of Uncertainty in AI, 1, 511 - 518, 2002.

Algarabia. Circunferencia osculatriz. Disponible en https://commons.wikimedia.org/ [consutado el 26 de marzo de 2017].

Baturone, A. O. Robótica: manipuladores y robots móviles. Marcombo, 2005.

Siciliano, B., Sciavicco, L., Villani, L., y Oriolo, G. Robotics: modelling, planning and control. Springer Science & Business Media, 2010.

Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H. F., y Csorba, M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17, 229 - 241, 2001.

Durrant-Whyte, H. y Bailey T. Simultaneous localization and mapping: part I. Robotics & Automation Magazine, 99 - 106, 2006.

Published

2017-09-08

How to Cite

Cárdenas Cartagena, J. D., & Jaramillo Velásquez, V. H. (2017). Position estimation in mobile robots using particle filters. Revista Politécnica, 13(25), 103–113. https://doi.org/10.33571/rpolitec.v13n25a8

Issue

Section

Articles

Similar Articles

> >> 

You may also start an advanced similarity search for this article.