Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión

Autores/as

  • Sergio Alejandro Madrigal Moreno Politécnico Colombiano Jaime Isaza Cadavid
  • Nelson David Muñoz Ceballos Politécnico Colombiano Jaime Isaza Cadavid

DOI:

https://doi.org/10.33571/rpolitec.v15n28a11

Palabras clave:

Vehículo de guiado autónomo, ROS, Robot móvil

Resumen

Se presenta una revisión del estado del arte de vehículos de guiado autónomo (AGV por sus siglas en inglés: Automated Guided Vehicle) para el transporte de objetos y materia prima en aplicaciones industriales. La revisión de literatura hace énfasis en varios aspectos como la identificación del lugar, aplicación en diferentes entornos, control del vehículo y descripción de los sistemas de software usados para la programación de los robots móviles, de acuerdo a los requisitos o necesidades a resolver. Adicionalmente, se hace un análisis, con base a las referencias citadas, del aporte que hace este tipo de tecnologías no solo a la industria, sino también a otros tipos de modelo de negocio, como lo son el área de la salud, los sistemas de transporte urbano, entre otros. 

 

A review of the state of the art is presented of the autonomous guidance vehicles (AGV) to transport objects and raw material in industrial applications. The literature review is focus in different topics as the identification of place, application in different environments, vehicle control and description of the software systems used for the programming of mobile robots, according to the requirements or needs to be resolved. Additionally, an analysis is made, based on the aforementioned references, of the contribution made by this type of technologies not only to the industry, but also to other types of business model, such as the health area, the systems of urban transport, etc.

 

Métricas de artículo

 Resumen: 2368  HTML: 3956  PDF: 2038  XML: 154 

Métricas PlumX

Biografía del autor/a

Sergio Alejandro Madrigal Moreno, Politécnico Colombiano Jaime Isaza Cadavid

Ing. de Control, especialista en Automática. Estudiante de maestría en ingeniería énfasis en gestión de la automatización

Nelson David Muñoz Ceballos, Politécnico Colombiano Jaime Isaza Cadavid

M.Sc. en Automatización y control Industrial. Docente Politécnico Colombiano Jaime Isaza Cadavid. Estudiante de doctorado en ingeniería sistemas e informática, Universidad Nacional de Colombia

Citas

Samaranayake P, Ramanathan K, Laosirihongthong T. Implementing industry 4.0 — A technological readiness perspective. 2017 IEEE Int Conf Ind Eng Eng Manag. 2017:529-533. doi:10.1109/IEEM.2017.8289947

Hill R, Devitt J, Anjum A, Ali M. Towards In-Transit Analytics for Industry 4 . 0. In: 2017 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData). ; 2017:810-817. doi:10.1109/iThings-GreenCom-CPSCom-SmartData.2017.124

Vasiljević G, Miklić D, Draganjac I, Kovačić Z, Lista P. High-accuracy vehicle localization for autonomous warehousing. Robot Comput Integr Manuf. 2016;42:1-16. doi:10.1016/j.rcim.2016.05.001

Chen B, Qu T, Thurer M, Huang GQ, Li C, Xu S. Warehouse workload control for production logistic. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE). ; 2017:237-242. doi:10.1109/COASE.2017.8256109

Wang HF, Chang CM. Facility layout for an automated guided vehicle system. Procedia Comput Sci. 2015;55(Itqm):52-61. doi:10.1016/j.procs.2015.07.007

Bechtsis D, Tsolakis N, Vlachos D, Iakovou E. Sustainable supply chain management in the digitalisation era: The impact of Automated Guided Vehicles. J Clean Prod. 2017;142:3970-3984. doi:10.1016/j.jclepro.2016.10.057

Bostelman R, Messina E. Towards Development of an Automated Guided Vehicle Intelligence Level Performance Standard. In: Autonomous Industrial Vehicles: From the Laboratory to the Factory Floor. ; 2016:1-22. doi:10.1520/STP159420150054

Le-Anh T, De Koster MBM. A review of design and control of automated guided vehicle systems. Eur J Oper Res. 2006;171(1):1-23. doi:10.1016/j.ejor.2005.01.036

Andreasson H, Bouguerra A, Cirillo M, et al. Autonomous transport vehicles: Where we are and what is missing. IEEE Robot Autom Mag. 2015;22(1):34-75. doi:10.1109/MRA.2014.2381357

Shakya R, Rajanwal K, Patel S, Maurya RK. Optimization and Designing of Pid, Fuzzy & Pid-Fuzzy Controller. Int J Sci Eng Res. 2014;5(1):2040-2048.

Zulfatman, Rahmat MF. Application of Self-Tuning Fuzzy Pid Controller on Industrial Hydraulic Actuator. Nternational J Smart Sens Intell Syst. 2009;2(2):246-261.

S RKA. Speed Control System Design Using Fuzzy-PID For Load Variation of Automated Guided Vehicle ( AGV ). In: 2017 2nd International Conference on Frontiers of Sensors Technologies. ; 2017:5-9. doi:10.1109/ICFST.2017.8210549

Juan Martin Echeverri Estrada PAEM. Caracterización De Un Agv (Vehículo Guiado Automáticamente) En El Sistema De Manufactura Flexible; Caso Centro Tecnológico De Automatización Ctai De La Pontificia Universidad Javeriana. 2012. http://repository.javeriana.edu.co/bitstream/10554/10296/1/EcheverriEstradaJuanMartin2013.pdf.

Vis IFA. Survey of research in the design and control of automated guided vehicle systems. Eur J Oper Res. 2006;170(3):677-709. doi:10.1016/j.ejor.2004.09.020

Gunter Ullrich. Automated Guided Vehicle Systems. Springer. Germany; 2015. doi:10.1016/0166-3615(84)90043-5

Theunissen J. Smart AGV System for Manufacturing Shopfloor in the Context of Industry 4 . 0. In: 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE; 2018:1-6. doi:10.1109/M2VIP.2018.8600887

Chen B. VERIFICATION AND VALIDATION STRATEGIES ON COLLABORATIVE ROBOTIC. In: 2017 IEEE International Symposium on Product Safety and Compliance Engineering - Taiwan (ISPCE-TW). IEEE; 2017:1-2. doi:10.1109/ISPCE-TW.2017.8626833

Parys R Van, Verbandt M, Kotz M, et al. Distributed Coordination , Transportation & Localisation in Industry 4 . 0. In: 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). ; 2018:24-27. doi:10.1109/IPIN.20188533768

Julián A, Zapata M, Felipe D, Lema G, Castro Ospina AE. Diseño De Prototipo De Un Vehículo De Guiado Automático.; 2015.

Bacik J, Durovsky F, Biros M, Kyslan K, Perdukova D, Sanjeevikumar P. Pathfinder – Development of Automated Guided Vehicle for Hospital Logistics. IEEE Access. 2017;5:1-1. doi:10.1109/ACCESS.2017.2767899

Kumar Das S. Design and Methodology of Automated Guided Vehicle-A Review. IOSR J Mech Civ Eng. 2016;03(03):29-35. doi:10.9790/1684-15010030329-35

Walenta R, Schellekens T, Ferrein A, Schiffer S. A decentralised system approach for controlling AGVs with ROS. In: 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017. ; 2017:1436-1441. doi:10.1109/AFRCON.2017.8095693

Garber L. Robot OS : A New Day for Robot Design. IEEE Journals Mag. 2013;46(12):16-20. doi:10.1109/MC.2013.434

Drira A, Pierreval H, Hajri-Gabouj S. Facility layout problems: A survey. Annu Rev Control. 2007;31(2):255-267. doi:10.1016/j.arcontrol.2007.04.001

Reddy Gutta P, Sai Chinthala V, Venkatesh Manchoju R, Charan MVN V, Purohit R. A Review On Facility Layout Design Of An Automated Guided Vehicle In Flexible Manufacturing System. Mater Today Proc. 2018;5(2):3981-3986. doi:10.1016/j.matpr.2017.11.656

Beinschob P, Meyer M, Reinke C, Digani V, Secchi C, Sabattini L. Semi-automated map creation for fast deployment of AGV fleets in modern logistics. Rob Auton Syst. 2017;87:281-295. doi:10.1016/j.robot.2016.10.018

Lu S, Xu C, Zhong RY, Wang L. A RFID-enabled positioning system in automated guided vehicle for smart factories. J Manuf Syst. 2017;44:179-190. doi:10.1016/j.jmsy.2017.03.009

Saab SS, Nakad ZS. A Standalone RFID Indoor Positioning System Using Passive Tags. IEEE Trans Ind Electron. 2011;58(5):1961-1970. doi:10.1109/TIE.2010.2055774

Lu S, Xu C, Zhong RY, Wang L. A passive RFID tag-based locating and navigating approach for automated guided vehicle. Comput Ind Eng. 2018;(xxxx):0-1. doi:10.1016/j.cie.2017.12.026

Hartmann S. Scheduling of Automated Guided Vehicle in Different Flexible Manufacturing System Environment. Int J Innov Res Adv Eng. 2014;1(8):262-267.

Kang J, Lee J, Eum H, Hyun CH, Parks M. An application of parameter extraction for AGV navigation based on computer vision. In: 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2013. ; 2013:622-626. doi:10.1109/URAI.2013.6677408

Osman K, Ghommam J, Saad M. Combined road following control and automatic lane keeping for automated guided vehicles. 2016 14th Int Conf Control Autom Robot Vision, ICARCV 2016. 2017;2016(November):13-15. doi:10.1109/ICARCV.2016.7838680

Pedan M, Gregor M, Plinta D. Implementation of Automated Guided Vehicle System in Healthcare Facility. Procedia Eng. 2017;192:665-670. doi:10.1016/j.proeng.2017.06.115

Acosta Calderon CA, Mohan ER, Ng BS. Development of a hospital mobile platform for logistics tasks. Digit Commun Networks. 2015;1(2):102-111. doi:10.1016/j.dcan.2015.03.001

Barnea A, Berrabah SA. IMU ( Inertial Measurement Unit ) Integration for the Navigation and Positioning of Autonomous Robot Systems. CEAI. 2011;13(2):38-43.

Evany Ricardo Sepúlveda Gómez. Diseño e implementación de un vehículo guiado autónomo para la ubicación de libros en un ambiente controlado. 2014. www.springer.com.

Lorenzo Sabattini, Mika Aikio, Patric Beinschob, Elena Cardarelli VD. The PAN-Robots Project: Advanced Automated Guided Vehicle Systems for Industrial Logistics. IEEE Robot Autom Mag. 2017;18(March 2018):55-64. doi:10.1109/MRA.2017.2700325

Wurman PR, D’Andrea R, Mountz M. Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Mag. 2008;29(1):9. doi:10.1609/aimag.v29i1.2082

Valencia-Hernández C. A., Restrepo-Martínez A., Muñoz-Ceballos N. D., “Caracterización de marcadores de realidad aumentada para suuso en robótica,” Revista Politécnica, vol. 13, no. 25, pp. 87-102, 2017. doi:10.33571/rpolitec.v13n25a7

Parikh P, Sheth S, Vasani R, Gohil JK. Implementing Fuzzy Logic Controller and PID Controller to a DC Encoder Motor - “a case of an Automated Guided Vehicle.” Procedia Manuf. 2018; 20:219-226. doi:10.1016/j.promfg.2018.02.032

Rusdinar A, Kim S-S. Modeling of vision based robot formation control using fuzzy logic controller and extended Kalman filter. Int J Fuzzy Log Intell Syst. 2012;12(3):238-244. doi:10.5391/IJFIS.2012.12.3.238

Kudinov YI, Kolesnikov VA, Pashchenko FF, Pashchenko AF, Papic L. Optimization of Fuzzy PID Controller’s Parameters. Procedia Comput Sci. 2017;103(October 2016):618-622. doi:10.1016/j.procs.2017.01.086

Ahmed SA, Petrov MG. Trajectory Control of Mobile Robots using Type-2 Fuzzy-Neural PID Controller. IFAC-PapersOnLine. 2015;48(24):138-143. doi:10.1016/j.ifacol.2015.12.071

M. B. Nugraha, Rizki Ardianto P. DD. Design and Implementation of RFID Line-Follower Robot System with Color Detection Capability using Fuzzy Logic. In: 2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC). ; 2015:75-78. doi:10.1109/ICCEREC.2015.7337058

Zou O, Member RYZ. Automatic Logistics in a Smart Factory using RFID-enabled AGVs. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE; 2018:822-826. doi:10.1109/AIM.2018.8452349

Bui TL, Doan PT, Kim HK, Kim SB. Trajectory tracking controller design for AGV using laser sensor based positioning system. In: 2013 9th Asian Control Conference (ASCC). ; 2013:1-5. doi:10.1109/ASCC.2013.6606202

Carlucho I, De Paula M, Villar SA, Acosta GG. Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst Appl. 2017;80:183-199. doi:10.1016/j.eswa.2017.03.002

Hellmund A-M, Wirges S, Tas ÖS, Bandera C, Salscheider NO. Robot Operating System: A Modular Software Framework for Automated Driving. In: Proc. IEEE International Conference on Intelligent Transportation Systems (ITSC). ; 2016:1564-1570. doi:10.1109/ITSC.2016.7795766

Messner J. EB Assist ADTF Automotive Data and Time Triggered Framework.; 2015.

K. Hoffmeister. Automated Driving - Necessary Infrastructure Shift. ATZ Electron. 2016;1:42-47. doi:https://doi.org/10.1007/s38314-016-0012-z

Quigley M, Conley K, Gerkey B, et al. ROS: an open-source Robot Operating System. Icra. 2009;3(Figure 1):5. http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf.

Robot Operating System (ROS). http://www.ros.org/. Accessed October 8, 2018.

Aini FRQ, Jati AN, Sunarya U. A study of Monte Carlo localization on robot operating system. In: 2016 International Conference on Information Technology Systems and Innovation, ICITSI 2016 - Proceedings. ; 2017:1-6. doi:10.1109/ICITSI.2016.7858235

Cavanini L, Cicconi P, Freddi A, et al. A Preliminary Study of a Cyber Physical System for Industry 4.0: Modelling and Co-Simulation of an AGV for Smart Factories. In: 2018 Workshop on Metrology for Industry 4.0 and IoT. IEEE; 2018:169-174. doi:10.1109/METROI4.2018.8428334

COOJA Simulator. http://www.contiki-os.org/start.html. Accessed October 10, 2018.

Abhishek B, Varun Rufus Raj Samuel D, U.V. Vignesh, Gautham S, Keshav k SRN. ROS based Stereo Vision System for Autonomous Vehicle. In: IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017). ; 2017:2269-2273. doi:10.1109/ICPCSI.2017.8392121

Rhoades BB, Sabo JP, Conrad JM. Enabling a National Instruments DaNI 2.0 robotic development platform for the Robot Operating System. In: Conference Proceedings - IEEE SOUTHEASTCON. ; 2017:1-5. doi:10.1109/SECON.2017.7925293

TurtleBot. http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/. Accessed October 15, 2018.

Robotnik-Portafolio. https://www.robotnik.es/logistics/portfolio/. Accessed October 15, 2018.

Schueftan DS, Colorado MJ, Bernal IFM. Indoor mapping using SLAM for applications in Flexible Manufacturing Systems. In: 2015 IEEE 2nd Colombian Conference on Automatic Control, CCAC 2015 - Conference Proceedings. ; 2015:5-10. doi:10.1109/CCAC.2015.7345226

Jaulin L. Range-only SLAM with occupancy maps: A set-membership approach. IEEE Trans Robot. 2011;27(5):1004-1010. doi:10.1109/TRO.2011.2147110

Martinez‐Barbera H, Herrero‐Perez D. Development of a flexible AGV for flexible manufacturing systems. Ind Robot An Int J. 2010;37(5):459-468. doi:10.1108/01439911011063281

Paul PV, Saraswathi R. The Internet of Things – A Comprehensive Survey. In: 2017 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC). ; 2017:421-426.

Ribas-Xirgo L. A Virtual Laboratory of a Manufacturing Plant operated with mobile robots. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). ; 2014:1-4. doi:10.1109/ETFA.2014.7005279

Paul G, Liu DK. Replanning of Multiple Autonomous Vehicles in Material Handling. Proc IEEE Int Conf Robot Autom Mechatronics, RAM. 2006:231-236. doi:10.1109/RAMECH.2006.252729

Vavrík V, Gregor M, Grznár P. Computer Simulation as a Tool for the Optimization of Logistics Using Automated Guided Vehicles. Procedia Eng. 2017;192:923-928. doi:10.1016/j.proeng.2017.06.159

Fellan A, Schellenberger C, Zimmermann M, Schotten HD. Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4 . 0. In: 2018 International Conference on Information and Communication Technology Convergence (ICTC). IEEE; 2018:171-176. doi:10.1109/ICTC.2018.8539695

Publicado

2019-06-25

Cómo citar

Madrigal Moreno, S. A., & Muñoz Ceballos, N. D. (2019). Vehículos de guiado autónomo (AGV) en aplicaciones industriales: una revisión. Revista Politécnica, 15(28), 117–137. https://doi.org/10.33571/rpolitec.v15n28a11

Número

Sección

Artículos

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.