Segmentación rápida del ventrículo derecho en cine-MRI a partir de una representación densa de Hough
Resumen
La segmentación del Ventrículo Derecho (VD) es esencial para el diagnóstico de múltiples patologías y condiciones cardiacas. Sin embargo, su delineación manual es una tarea tediosa y el soporte computacional resulta complejo debido a la variabilidad geométrica y dinámica. Este trabajo introduce una transformación y representación densa de Hough (TH) que permite una caracterización no paramétrica de la forma, codificando cada vóxel por su curvatura y orientación. Esta representación es integrada en un enfoque de seguimiento bayesiano, que logra de forma eficiente segmentar la estructura del VD, a lo largo del ciclo cardíaco. El enfoque propuesto fue evaluado en un conjunto de datos públicos, con 16 pacientes, logrando un coeficiente Sørensen-Dice de 0,87 y 0,92, para volúmenes completos y estructuras basales, respectivamente. Estos resultados evidencian una adecuada adaptación del modelo propuesto respecto a la forma del VD a lo largo de todo el ciclo cardíaco.
Citas
World Health Organization. (2019). World health statistics 2019: monitoring health for the SDGs, sustaina-ble development goals. World Health Organization.
Labrador, A. M. A., Martínez, F., & Castro, E. R. (2013, November). A novel right ventricle segmentation approach from local spatio-temporal MRI information. In Iberoamerican Congress on Pattern Recognition (pp. 206-213). Springer, Berlin, Heidelberg.
Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P. A., ... & Jodoin, P. M. (2018). Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE transactions on medical imaging, 37(11), 2514-2525.
Petitjean, C., Zuluaga, M. A., Bai, W., Dacher, J. N., Grosgeorge, D., Caudron, J., ... & Yuan, J. (2015). Right ventricle segmentation from cardiac MRI: a collation study. Medical image analysis, 19(1), 187-202.
Vanderpool, R. R., Pinsky, M. R., Naeije, R., Deible, C., Kosaraju, V., Bunner, C., ... & Simon, M. A. (2015). RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart, 101(1), 37-43.
Buchner, S., Eglseer, M., Debl, K., Hetzenecker, A., Luchner, A., Husser, O., ... & Arzt, M. (2015). Sleep disordered breathing and enlargement of the right heart after myocardial infarction. European Respiratory Journal, 45(3), 680-690.
Gilbert, K., Lam, H. I., Pontré, B., Cowan, B. R., Occleshaw, C. J., Liu, J. Y., & Young, A. A. (2017). An interactive tool for rapid biventricular analysis of congenital heart disease. Clinical physiology and functional imaging, 37(4), 413-420.
Petitjean, C., & Dacher, J. N. (2011). A review of segmentation methods in short axis cardiac MR imag-es. Medical image analysis, 15(2), 169-184.
Winter, M. M., Bernink, F. J., Groenink, M., Bouma, B. J., van Dijk, A. P., Helbing, W. A., ... & Mulder, B. J. (2008). Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible de-lineation of the cavity. Journal of Cardiovascular Magnetic Resonance, 10(1), 1-8.
Tran, P. V. (2016). A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494.
El-Rewaidy, H., Ibrahim, E. S., & Fahmy, A. S. (2016). Segmentation of the right ventricle in MRI images using a dual active shape model. IET Image Processing, 10(10), 717-723.
Sedai, S., Garnavi, R., Roy, P., & Liang, X. (2015, August). Multi-atlas label fusion using hybrid of dis-criminative and generative classifiers for segmentation of cardiac MR images. In 2015 37th Annual Interna-tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2977-2980). IEEE.
Xie, L., Sedai, S., Liang, X., Compas, C. B., Wang, H., Yushkevich, P. A., & Syeda-Mahmood, T. (2015, April). Multi-atlas label fusion with augmented atlases for fast and accurate segmentation of cardiac MR images. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (pp. 376-379). IEEE.
Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., & Li, S. (2016). Multi-scale deep networks and re-gression forests for direct bi-ventricular volume estimation. Medical image analysis, 30, 120-129.
Avendi, M. R., Kheradvar, A., & Jafarkhani, H. (2016). Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. Journal of Cardiovascular Magnetic Resonance, 18(1), 1-3.
Manzanera, A. (2012). Dense Hough transforms on gray level images using multi-scale derivatives. In SIXIEME WORKSHOP AMINA 2012" Applications Médicales de l'Informatique: Nouvelles Approches".
Duffner, S., & Garcia, C. (2013). Pixeltrack: a fast adaptive algorithm for tracking non-rigid objects. In Proceedings of the IEEE international conference on computer vision (pp. 2480-2487).
Luo, G., An, R., Wang, K., Dong, S., & Zhang, H. (2016, September). A deep learning network for right ventricle segmentation in short-axis MRI. In 2016 Computing in Cardiology Conference (CinC) (pp. 485-488). IEEE.
El-Rewaidy, H., Ibrahim, E. S., & Fahmy, A. S. (2016). Segmentation of the right ventricle in MRI images using a dual active shape model. IET Image Processing, 10(10), 717-723.
El-Rewaidy, H., & Fahmy, A. S. (2015, April). Segmentation of the Right Ventricle in MR images using dual active shape model in the Bookstein coordinates. In 2015 IEEE 12th International Symposium on Bio-medical Imaging (ISBI) (pp. 1320-1323). IEEE.
Maier, O. M., Jiménez, D., Santos, A., & Ledesma-Carbayo, M. J. (2012). Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts. In 2012 Computing in Cardiology (pp. 697-700). IEEE.
Zuluaga, M. A., Cardoso, M. J., Modat, M., & Ourselin, S. (2013). Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In International Conference on Functional Imaging and Modeling of the Heart (pp. 174-181). Springer, Berlin, Heidelberg.
Bai, W., Shi, W., Wang, H., Peters, N. S., & Rueckert, D. (2012). Multiatlas based segmentation with lo-cal label fusion for right ventricle MR images. image, 6, 9.
Grosgeorge, D., Petitjean, C., Dacher, J. N., & Ruan, S. (2013). Graph cut segmentation with a sta-tistical shape model in cardiac MRI. Computer Vision and Image Understanding, 117(9), 1027-1035.
Derechos de autor 2022 Fabio Martínez Carrillo, Alejandra Moreno Tarazona, Luis Carlos Guayacán Chaparro , Lola Xiomara Bautista Rozo, Jean Alejandro Pico

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.