Effect of hydrodynamic forces on mineral particles trajectories in gravimetric concentrator type JIG

Autores

DOI:

https://doi.org/10.33571/rpolitec.v14n27a7

Palavras-chave:

Solid-liquid interaction, Gravimetric concentration, Numerical simulation, High density suspensions, Eulerian-Lagrangian model

Resumo

Hydrodynamic interaction is a sensitive process for gravity concentration equipment. Because of the nonlinearity and complexity of interaction dynamics due the solid particles and water, reliable mathematical models are needed to perform plant width design (PWD)-oriented tasks. To this end, in this paper we present a study of particle motion in a water oscillating flow subjected to a sinusoidal profile on a jig device, which is a high yield and high recovery gravimetric concentrator device widely used in minerals processing. A mathematical Eulerian-Lagrangian model (ELM) is used where fluid motion is calculated by solving the Navier-Stokes and continuity equations by a widely used numerical procedure call Semi-Implicit Method for Pressure Linked Equations algorithm (SIMPLE). The motion of individual particles is obtained by a forces balance applying the Newton’s second law of motion through the action of forces imposed by the water and gravity. Liquid-solid interactions forces are calculated by the mathematical Eulerian-Lagrangian model extended to a particle suspension having a wide size and density distribution. The calculation and comparison of Basset, pressure gradient and virtual mass forces with other forces (drag and buoyancy) acting on particle trajectories in water oscillating flows were carried out under turbulent regimen flow. It was found that Basset, pressure gradient and virtual mass forces have a significant effect on the particle’s trajectories affecting their subsequent stratification. Furthermore, the conditions under which these forces can be neglected in the jig’s hydrodynamic model were studied. The study demonstrates significant differences in the particle trajectories for various size and density distribution.

Métricas do artigo

 Resumo: 627  PDF (English): 358  XML (English): 78 

Métricas PlumX

Biografia do Autor

Manuel Alejandro Ospina, ITM

Docente Tiempo completo

Departamento de mecatrónica y electromecánica

Liliana María Usuga Manco, ITM

PhD en Ingeniería: Ciencia y Tecnología de Materiales

Referências

M. O. Bustamante, A. C. Gaviria, and O. J. Restrepo, Class notes of the subject: minerals Concentration. Medellín: Universidad nacional de Colombia-sede Medellín, 2008.

R. O. Burt, “The role of gravity concentration in modern processing plants,” Miner. Eng., vol. 12, no. 11, pp. 1291–1300, Nov. 1999.

S. Cierpisz, “A dynamic model of coal products discharge in a jig,” Miner. Eng., vol. 105, pp. 1–6, 2017.

T. Phengsaart, M. Ito, N. Hamaya, and C. Baltazar, “Improvement of jig efficiency by shape separation , and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and ‘ entanglement factor ,’” Miner. Eng., vol. 129, no. May, pp. 54–62, 2018.

F. Pita and A. Castilho, “Influence of shape and size of the particles on jigging separation of plastics mixture,” Waste Manag., vol. 48, pp. 89–94, 2016.

R. O. Burt, Gravity concentration technology, Vol 5. Amsterdam, Netherlands: Elsevier, 1984.

M. A. A. Aziz, K. M. Isa, N. J. Miles, and R. A. Rashid, “Pneumatic jig: effect of airflow, time and pulse rates on solid particle separation,” Int. J. Environ. Sci. Technol., no. January, pp. 1–12, 2018.

K. J. Dong, S. B. Kuang, a. Vince, T. Hughes, and a. B. Yu, “Numerical simulation of the in-line pressure jig unit in coal preparation,” Miner. Eng., vol. 23, no. 4, pp. 301–312, Mar. 2010.

S. M. Viduka, Y. Q. Feng, K. Hapgood, and M. P. Schwarz, “Discrete particle simulation of solid separation in a jigging device,” Int. J. Miner. Process., vol. 123, pp. 108–119, Sep. 2013.

F. W. Mayer, “Fundamentals of a potential theory of jigging process,” in 7th International Minerals Processing Congress, 1964, pp. 75–86.

L. M. Tavares and R. P. King, “A Useful Model for the Calculation of the Performance of Batch and Continuous Jigs,” Coal Prep., vol. 15, no. 3–4, pp. 99–128, 1995.

Y. Xia, F. F. Peng, and E. Wolfe, “CFD simulation of fine coal segregation and stratification in jigs,” Int. J. Miner. Process., vol. 82, no. 3, pp. 164–176, 2007.

Y. K. Xia and F. F. Peng, “Numerical simulation of behavior of fine coal in oscillating flows,” Miner. Eng., vol. 20, no. 2, pp. 113–123, 2007.

S. Viduka, Y. Feng, K. Hapgood, and P. Schwarz, “CFD-DEM investigation of particle separations using a Trapezoidal jigging profile,” in Ninth International Conference on CFD in the Minerals and Process Industries, 2012, pp. 1–8.

S. Viduka, Y. Feng, K. Hapgood, and P. Schwarz, “CFD-DEM investigation of particle separations using a sinusoidal jigging profile,” Adv. Powder Technol., vol. 24, no. 2, pp. 473–481, 2013.

R. Srinivasan, B. K. Mishra, and S. P. Mehrotra, “Simulation of Particle Stratification in Jigs Simulation of Particle Stratification in Jigs,” Coal Prep., vol. 20, no. 1–2, pp. 55–70, 1999.

B. K. Mishra and S. P. Mehrotra, “Modelling of particle stratification in jigs by the discrete element method,” Miner. Eng., vol. 11, no. 6, pp. 511–522, 1998.

B. K. Mishra and S. P. Mehrotra, “A jig model based on the discrete element method and its experimental validation,” Int. J. Miner. Process., vol. 63, pp. 177–189, 2001.

A. J. . Beck and P. N. Holtham, “Computer simulation of particle stratification in a two-dimensional batch jig,” Miner. Eng., vol. 6, no. 5, pp. 523–532, 1993.

M. A. Ospina-Alarcón and M. O. Bustamante-Rúa, “Hydrodynamic study of gravity concentration devices type JIG,” Rev. Prospect., vol. 13, no. 1, pp. 52–58, 2015.

M. A. Ospina-Alarcón, “Modelamiento de la hidrodinámica de la separación gravimétrica de minerales en jigs,” Universidad Nacional de Colombia, 2014.

M. A. Ospina-Alarcón, A. B. Barrientos-Ríos, and M. O. Bustamante-Rúa, “Influence of the pulse wave in the stratification of high density particles in a JIG device,” Rev. TecnoLógicas, vol. 19, no. 36, pp. 13–25, 2016.

E. F. Crespo, “Modeling segregation and dispersion in jigging beds in terms of the bed porosity distribution,” Miner. Eng., vol. 85, pp. 38–48, 2016.

K. Asakura, M. Nagao, and M. Mizuno, “Simulation of Particle Motion in a Jig Separator,” J. JSEM, vol. 7, no. Special Issue, 2007.

K. Asakura, S. Harada, T. Funayama, and I. Nakajima, “Simulation of descending particles in water by the distinct element method,” Powder Technol., vol. 94, pp. 195–200, 1997.

B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. New York: Jonh Wiley & Sons, 1994.

K. Asakura, M. Mizuno, M. Nagao, and S. Harada, “Numerical Simulation of Particle Motion in a Jig Separator,” in 5th Join ASME JSME Fluids Engineering Conference, 2007, pp. 385–391.

G. Rudinger, “Fundamentals of Gas-Particle Flow,” in Handbook of Powder Technology, vol. 2, Amsterdam, Netherlands: Elsevier, 1980, pp. 1–142.

M. Sommerfeld and N. Huber, “Experimental analysis of modelling of particle-wall collisions,” Int. J. Multiph. Flow, vol. 25, no. 6–7, pp. 1457–1489, 1999.

Y. D. Sobral, T. F. Oliveira, and F. R. Cunha, “On the unsteady forces during the motion of a sedimenting particle,” Powder Technol., vol. 178, no. 2, pp. 129–141, 2007.

S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980.

H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, “Discrete particle simulation of particulate systems: A review of major applications and findings,” Chem. Eng. Sci., vol. 63, no. 23, pp. 5728–5770, 2008.

A. B. Basset, A Treatise on Hidrodynamics, Volumen II. London, UK: George Bell and Sons, 1988.

L. Schiller and A. Naumann, “Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung,” Ver. Deut. Ing., vol. 77, pp. 318–320, 1933.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics., 2nd ed. London, UK: Pearson Education, 2007.

S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transf., vol. 15, no. 10, pp. 1787–1806, 1972.

C. Coimbra and R. Rangel, “General solution of the particle momentum equation in unsteady Stokes flows,” J. Fluid Mech., vol. 370, pp. 53–72, 1998.

G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press, 1967.

H. Lamb, Hydrodynamics, 6th ed. New York: Cambridge University Press, 1975.

L. M. Milne-Thomson, Theoretical Hydrodynamics, 5th ed. London, UK: Macmillan & Co Ltd, 1962.

Publicado

2018-12-08

Como Citar

Ospina, M. A., & Usuga Manco, L. M. (2018). Effect of hydrodynamic forces on mineral particles trajectories in gravimetric concentrator type JIG. Revista Politécnica, 14(27), 68–79. https://doi.org/10.33571/rpolitec.v14n27a7

Edição

Seção

Artículos

Artigos Semelhantes

> >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.