Determinación del Clorpirifos en la industria alimentaria mediante el uso de biosensores enzimáticos: Una revisión bibliográfica

Autores/as

  • Jacqueline Betancur Universidad de Antioquia
  • Gustavo A. Peñuela Universidad de Antioquia

Palabras clave:

Colinesterasa, biosensor, plaguicidas, substrato, Clorpirifos, Industria alimentaria.

Resumen

La necesidad de monitorear en corto tiempo los pesticidas organofosforados en los alimentos, ha llevado a la investigación sobre el desarrollo de herramientas analíticas capaces de cuantificarlos de manera simple, in situ y en lo posible a bajo costo. De este modo, los alimentos que contengan residuos de plaguicidas a una concentración no permitida por la normatividad se descartarían rápidamente. En la industria alimentaria y especialmente en la producción de leche por su masivo consumo y recambio constante se requiere que la decisión de calidad de la materia prima sea tomada lo más pronto posible. Los biosensores enzimáticos basados en Colinesterasa han sido desarrollados para el análisis de plaguicidas organofosforados en aguas, y con otras matrices están haciéndose varias investigaciones. Para el mejoramiento de la sensibilidad en la cuantificación de los plaguicidas mediantes los biosensores, se han estado estudiando técnicas de inmovilización enzimática, materiales y tipos de electrodos de trabajo.

Métricas de artículo

 Resumen: 894  PDF: 764 

Biografía del autor/a

Jacqueline Betancur, Universidad de Antioquia

Grupo Diagnóstico y Control de la Contaminación (GDCON). Facultad de Ingeniería. Sede de Investigación Universitaria (SIU). Universidad de Antioquia, calle 70 No. 52-21. Medellín, Colombia

Gustavo A. Peñuela, Universidad de Antioquia

Grupo Diagnóstico y Control de la Contaminación (GDCON). Facultad de Ingeniería. Sede de Investigación Universitaria (SIU). Universidad de Antioquia, calle 70 No. 52-21. Medellín, Colombia

Citas

Schreinemachers, P., Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6), 616–626. 2012.

Ferri, D., Gaviña, P., Costero, A. M., Parra, M., Vivancos, J.-L., Martínez-Máñez, R. Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array. Sensors and Actuators B: Chemical, 202(2014), 727–731. 2014.

Wang, Y., Kruzik, P., Helsberg, A.,Helsberg, I., Rausch, W.-D. Pesticide poisoning in domestic animals and livestock in Austria: a 6 year’s retrospective study. Forensic Sci. Int. 169, 157–160. 2007.

Morales, C., Rodríguez, N., Restrepo, L. F., López, C. Relación entre residuos de clorpirifos en leche y sangre de vacas Holstein y niveles séricos de estradiol y tiroxina. Revista electrónica de Veterinaria, 11(1). 2010.

Loaiza, A., Jaramillo, J. A., León, F. Incidencia de factores sociales, económicos, culturales y técnicos en el uso de agroquímicos por pequeños productores del departamento de Antioquia (p. 174). 2000.

Rekha, K., Gouda, Thakur, Karanth, N.G. Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring. Biosensors & Bioelectronics, 15(9-10), 499–502. 2000.

Vallecilla, C., Rodríguez, N., Restrepo, L. F., López, C. Relación entre residuos de clorpirifos en leche y sangre de vacas Holstein y niveles séricos de estradiol y tiroxina - Chlorpyrifos residues in milk and blood in Holstein cows and their relation to estradiol and thyroxin serum levels. Revista Electrónica de Veterinaria. REDVET, 11(1), 1–22. 2010.

Jiménez, C., León, D. Biosensores: Aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios. Revista de la facultad de química farmaceútica., 16(1), 144-154. 2009.

Rodríguez, D.C., Carvajal, S., Peñuela, G. Effect of chlorpyrifos on the inhibition of the enzyme acetylcholinesterase by cross-linking in watersupply samples and milk from dairy cattle. Talanta, 111, 1-7. 2013.

Borgmann, S., Schulte, A., Neugebauer, S., & Schuhmann, W. Amperometric Biosensors. En Advances in Electrochemical Science and Engineering. (págs. 1-84). Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2011.

Environmental Protection Agency. Human health risk an assessment. Chlorpyrifos. Obtenido de Environmental Protection Agency, Office of pesticide programs: http://www.epa.gov/scipoly/sap/meetings/2008/september/hed_ra.pdf [Consultado el 04 de noviembre de 2014].

Domínguez, J., Gossas, T., Villaverde, C., Danielson, H., & Sussman, F.. Experimental and ‘in silico’ analysis of the effect of pH on HIV-1 protease inhibitor affinity: Implications for the charge state of the protein ionogenic groups. Bioorganic & Medicinal Chemistry, 20, 4838–4847. 2012.

Arroyo, M. Inmovilización de enzimas. Fundamentos, métodos y aplicaciones Inmobilized. Ars Pharmaceutica, 39(2), 23–39. 1998.

Norouzi, P., Pirali-Hamedani, M., Ganjali, M.R., Faridbod, F.A. A novel acetyl cholinesterase biosensor based on chitosan–gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry, Int. J. Electrochem. Sci. 5, 1434–1446. 2010.

Di Tuoro, D., Portaccio, M., Lepore, M., Arduini, F., Moscone, D., Bencivenga, U., Mita, D. G. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotechnology, 29(1), 132–8. 2011.

Andreescu, S., Marty, J.-L. Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomolecular Engineering, 23(1), 1–15. 2006.

Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., McNamara, J.O., White, L.E. Neuroscience, fourth ed., Sinauer Associates, Sunderland, MA. 2008.

Krasinski, A., Radic, Z., Manetsch, R., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors, J. Am. Chem. Soc. 127, 6686–6692. 2005.

Manetsch, R., Krasinski, A., Radic, Z., Raushel, J., Taylor, P., Sharpless, K.B., Kolb H.C. In situ click chemistry: enzyme inhibitors made to their own specifications, J. Am. Chem. Soc. 126, 12809–12818. 2004.

Lin, G., Lee, Y.R., Liu, Y.C., Wu, Y.G. Ortho effect for inhibition mechanisms of butyrylcholinesterase by o-substitute phenyl L-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and phenol, Chem. Res. Toxicol. 18, 1124–1131. 2005.

Hosea, N.A., Berman, H.A., Taylor, P. Specificity and orientation of trigonal carboxi esters and tetrahedral alkilphosphonyl esters in cholinesterases. Biochemistry 34, 11528–11536. 1995.

Pohanka, M. Musilek, K. Kuca, K. Progress of biosensors based on cholinesterase inhibition, Curr. Med. Chem. 16, 1790–1798. 2009.

Lin, Y.H., Lu, F., Wang, J., Disposable carbon nanotube modified screen- printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16, 145– 149. 2004.

Cremisini, C., Di Sario, S., Mela, J., Pilloton, R., Palleschi, G., Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Anal. Chim. Acta 311, 273–280. 1995.

Marty, J.-L., Sode, K., Karube, I. Biosensor for detection of organophosphate and carbamate insecticides. Electroanalysis 4, 249–252. 1992.

Rouillon, R., Mionetto, N., Marty, J.-L., Acetylcholine biosensor invol- ving entrapment of two enzymes. Optimization of operational and storage conditions. Anal. Chim. Acta 268, 347–350. 1992.

Bernabei, M., Cremisini, C., Mascini, M., Palleschi, G. Determination of organophosphorus and carbamic pesticides with a choline and acetylcholine electrochemical biosensor. Anal. Lett. 24, 1317–1331. 1991.

Palleschi, G., Bernabei, M., Cremisini, C., Mascini, M. Determination of organophosphorus insecticides with a choline electrochemical biosensor. Sens. Actuators B 7, 513–517. 1992.

Kumaran, S., Morita, M., Application of a cholinesterase biosensor to screen for organophosphorus pesticides extracted from soil. Talanta 4, 649– 655. 1995.

Ghindilis, A.L., Morzunova, T.G., Barmin, A.V., Kurochin, I.N., Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis. Biosens. Bioelectron. 11, 873–880. 1996.

Imato, T., Ishibashi, N., Potentiometric butyrylcholine sensor for organophosphate pesticides. Biosens. Bioelectron. 10, 435–441. 1995.

Fernando, J.F., Rogers, K.R., Anis, N.A., Valdes, J.J., Thompson, R.G., Eldefrawi, A.T., Eldefrawi, M.E., Rapid detection of anticholinesterase insecticides by a reusable light addressable potentiometric biosensor. J. Agric. Food Chem. 41, 511–516. 1993.

Nunes, G.S., Barcelo, D., Grabaric, B.S., Diaz-Cruz, J.M., Ribeiro, M.L., Evaluation of highly sensitive amperometric biosensor with low cholinesterase charge immobilized on a chemically modified carbon paste electrode for trace determination of carbamates in fruit, vegetable and water samples. Anal. Chim. Acta 399, 37–49.1999.

Hart, A.L., Collier, W.A., Janssen, D. The response of screen-printed electrodes containing cholinesterases to organo-phosphate in solution and from commercial formulation. Biosens. Bioelectron. 12, 645–654. 1997.

Scouten, W. H., Luong, J. H. T., Brown, R. S. Enzyme or protein immobilization techniques for applications in biosensor design. TIBTECH, 13, 178–185. 1995.

La Rosa, C., Pariente, F., Hernandez, L., Lorenzo, E. Determination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate. Anal. Chim. Acta 295, 237–282. 1994.

Andreescu, S. Barthelmebs, L. Barthelmebs, J.-L., Immobilisation of AChE on screen-printed electrodes: comparative study between three immobilization methods applications to the detection of organophosphorus insecticides, Anal. Chim. Acta 464, 171–180. 2002.

Bonnet, C., Andreescu, S., Marty, J.-L., Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Anal. Chim. Acta 481, 209–211. 2003.

Andreescu, S., Noguer, T., Magearu, V., Marty, J.-L., Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta 57, 169–176. 2002.

Sotiropoulou, S. Chaniotakis, N.A. Tuning the sol–gel microenvironment for acetylcholinesterase encapsulation, Biomaterials. 26, 6771–6779. 2005.

Skladal, P. Biosensors based on cholinesterases for detection of pesti- cides. Food Technol. Biotechnol. 34, 43–49. 1996.

Skladal, P., Fiala, M., Krejci, J., Detection of pesticides in the environ- ment using biosensors based on cholinesterases. Intern. J. Environ. Anal. Chem. 65, 139–148. 1996.

Lee, H.S., Kim, Y.A., Chao, Y.A., Lee, Y.T., Oxidation of organopho- sphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere 46, 571–576. 2002.

Li, Y.G., Zhou,Y.X., Feng, J.L., Jiang, Z.H., Ma, L.R., Immobilisation of enzyme on screen-printed electrode by exposure to glutaraldehyde vapour for the construction of amperometric acetylcholinesterase electrodes. Anal. Chim. Acta 382, 272–282, 1999.

Vakurov, A. Simpson, C.E. Daly, C.L. Gibson, T.D. Millner, P.A. Acetylcholinesterase based biosensor electrodes for organophosphate pesticide detection: I. Modification of carbon surface for immobilization of acetylcholinesterase, Biosens. Bioelectron. 20 1118–1125. 2004.

Upadhyay, S. Rao, G.R. Sharma, M.K. Bhattacharya, B.K . Rao, V.K. Vijayaraghavan, R. Immobilization of acetylcholinesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates, and nerve agents, Biosens. Bioelectron. 25 832–83. 2009.

Wink, T. Van Zuilen, S.J. Bult, A. Van Bennekom, W.P. Self-assembled monolayers for biosensors, Analyst 122 43R–50R. 1997.

Gooding, J.J. Hibbert, D.B. The application of alkanethiols self-assembled monolayers to enzyme electrodes, Trends Anal. Chem. 18, 525–532. 1999.

Andreescu, S., Fournier, D., Marty, J.-L., Development of highly sensitive sensor based on bio-engineered acetylcholinesterase immobilized by affinity method. Anal. Lett. 39, 1865–1885. 2003.

Martorell, D., Cespedes, F., Martinez-Fabregas, E., Alegret, S. Determination of organophosphorus and carbamate pesticides using a biosensor based on polyshable 7,7,8,8- tetracyanoquinodimethane-modified graphite-epoxy biocomposite. Anal. Chim. Acta 337, 305–313. 1997.

Skladal, P., Nunes, G.S., Yamanaka, H., Ribeiro, M.L. Detection of carbamate pesticides in vegetable samples using cholinesterase-based biosensors. Electroanalysis 9, 1083–1087. 1997.

Hartley, I.C., Hart, H.P., Amperometric measurement of organophosphate pesticides using a screen-printed disposable sensor and biosensor based on cobalt phtalocyanine. Analytical Proceedings Including Analytical Communications 31, 333–337. 1994.

Noguer,T., Leca, B., Jeanty, G., Marty, J.-L., Biosensors based on enzyme inhibition. Detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides. Field Anal. Chem. Technol. 3, 171–178. 1999.

Andreescu, D., Andreescu, S., Sadik, O.A., Newmaterials for biosensors, biochips and molecular bioelectronics. In: Gorton, L. (Ed.), Biosensors and Modern Biospecific Analytical Techniques. Elsevier, Amsterdam, pp. 285– 329. 2005.

Joshi, K.A., Tang, J., Haddon, R.,Wang, J., Chen,W.,Mulchaldani, A., A disposable biosensors for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrodes. Electroanalysis 17, 54–58. 2005.

Descargas

Publicado

2015-06-30

Cómo citar

Betancur, J., & Peñuela, G. A. (2015). Determinación del Clorpirifos en la industria alimentaria mediante el uso de biosensores enzimáticos: Una revisión bibliográfica. Revista Politécnica, 11(20), 121–128. Recuperado a partir de https://revistas.elpoli.edu.co/index.php/pol/article/view/495

Número

Sección

Artículos

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.