Identificación de candidatos a primos Mersenne mediante clasificación ova-angular utilizando aprendizaje automático con regresión SVM y Kernel Gaussiano

Autores/as

DOI:

https://doi.org/10.33571/rpolitec.v19n37a7

Palabras clave:

Rotación Ova-Angular, Primos Mersenne, Máquinas de soporte vectorial, Kernel Gaussiano

Resumen

En este artículo se presentan tres números primos como altos potenciales para ser números de Mersenne y se sugiere su aplicación en testeos computacionales de primalidad. Estos números son construidos a partir de un algoritmo de regresión fundamentado en máquinas de vectores de apoyo (Support vector machine - SVM) y usando un Kernel Gaussiano. El entrenamiento de datos se lleva a cabo mediante el lenguaje de programación de Phyton, En el estudio se abordan los datos actuales de primos de Mersenne y se trabaja con el grupo de clasificación Ova-angular para primos de Mersenne.

In this paper three prime numbers are presented as high potentials to be Mersenne numbers and their application in computational primality testing is suggested. These numbers are constructed from a regression algorithm based on Support vector machines (SVM) and using a Gaussian Kernel. Data training is carried out using the Phyton programming language, In the study we address the current data of Mersenne primes and work with the Ova-angular classification group for Mersenne primes .

Métricas de artículo

|Resumen: 199 | PDF: 110 | HTML: 20 |

Métricas PlumX

Biografía del autor/a

Yeisson Alexis Acevedo-Agudelo, Universidad EAFIT

Magister   en   Matemáticas   Aplicadas

Gabriel Ignacio Loaiza-Ossa, Universidad EAFIT

Doctor en Ciencias Matemáticas

Citas

Schölkopf, B., & Smola, A. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification (2nd ed.). Wiley.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer Science & Business Media.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. https://doi.org/10.1023/A:1009715923555

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer Science & Business Media.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.

Ghosh, S., Ghosh, A., & Ganguly, N. (2019). Using Support Vector Machines for Predicting Prime Numbers. Proceedings of the 2019 IEEE 6th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). https://doi.org/10.1109/UPCON47194.2019.8975418

Granville, A. (2012). Prime numbers and cryptography. Notices of the American Mathematical Society, 59(10), 1430-1435.

Acevedo Y. (2021). Prime numbers: an alternative study using ova-angular rotations, JP Journal of Algebra, Number Theory and Applications 52(1), 127-161. DOI: 10.17654/NT052010127.

Acevedo Y. (2020). “A complete classification of the Mersenne’s primes and its implications for computing”, Revista Politécnica, vol.16, no.32pp.111-119. DOI:10.33571/rpolitec.v16n32a10.

Rivest, R. L. (1996). The MD5 Message-Digest Algorithm. RFC 1321. Internet Engineering Task Force.

Publicado

2023-03-28

Cómo citar

Acevedo-Agudelo, Y. A., & Loaiza-Ossa, G. I. (2023). Identificación de candidatos a primos Mersenne mediante clasificación ova-angular utilizando aprendizaje automático con regresión SVM y Kernel Gaussiano. Revista Politécnica, 19(37), 103–110. https://doi.org/10.33571/rpolitec.v19n37a7