Una clasificación completa de los números primos de Mersenne y sus implicaciones para la computación

Yeisson Alexis Acevedo-Agudelo

Resumen


Se realiza un estudio de los números primos de Mersenne utilizando el grupo multiplicativo módulo 360 y se obtiene una clasificación completa mediante sus clases residuales. Esto permite clasificar la búsqueda de los números primos de Mersenne en cuatro subgrupos mutuamente excluyentes (disjuntos) y contribuye a la selección ordenada de exponentes a probar computacionalmente. Acorde a esta idea, el trapecio de Mersenne se presenta con el propósito de dar una representación geométrica para esta clasificación. Finalmente, a partir de uno de los teoremas presentado y demostrado para primos en módulo 360, se establece una conjetura que podría resolverse mediante verificación computacional.

A study of Mersenne’s primes is carried out using the multiplicative group modulo 360 and a complete classification is obtained by its residual classes. This allows the search for Mersenne’s primes to be classified into four subgroups mutually exclusive (disjoint) and contributes to the ordered selection of exponents to be computationally tested. According to this idea, Mersenne’s trapeze is presented with the purpose of giving a geometric representation for this classification. Finally, from one of the theorems presented and proven for primes in modulo 360, a conjecture is established that could be solved by computing.


Palabras clave


Primos de Merssene; Clases residuales; Trapecio de Mersenne

Texto completo:

PDF (English) HTML (English)

Referencias


I. N. S. Waclaw Sierpinski, M. Stark, A Selection of Problems in the Theory of Numbers. Popular Lectures in Mathemat-ics, Elsevier Ltd, Macmillan Company, 1964.

Kenneth H. Rosen, Elementary number theory and its applications, 6th Edition, Monmouth University, 2011.

Y. D. Sergeyev, Numerical Computations with Infinite and Infinitesimal Numbers: Theory and Applications, 1st Edition, Vol. I, Springer, 2013.URL http://wwwinfo.deis.unical.it/~yaro/DIS_book_Sergeyev.pdf

M. T. Hamood, S. Boussakta, Efficient algorithms for computing the new Mersenne number transform, Digital Signal Processing 25 (2014) 280 – 288. doi: https://doi.org/10.1016/j.dsp.2013.10.018.

C. W., Number theory: an introduction to mathematics, Vol. Part A-B, Springer, 2006.

C. E. G. Pineda, S. M. García, Algunos tópicos en teoría de números: Números Mersenne, teorema Dirichlet, números fermat, Scientia et Technica 2 (48) (2011) 185–190. doi:https://doi.org/10.22517/ 23447214.1279.9

B. H. Gross, An elliptic curve test for Mersenne primes, Journal of Number Theory 110 (1) (2005) 114 – 119, Arnold Ross Memorial Issue. doi: https://doi.org/10.1016/j.jnt.2003.11.011.

H. Helfgot, Mayor arcs for goldbach problem, arXiv 14 (1) (2013) 1–79. URL https://arxiv.org/abs/1305.2897



DOI: https://doi.org/10.33571/rpolitec.v16n32a10

Citaciones

Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios

Métricas de artículo

Resumen: 97
PDF (English): 21 HTML (English): 88

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Revista Politécnica 
ISSN: 1900-2351
ISSN: 2256-5353 (En línea)

DOI:  10.33571/rpolitec

Editada por: Politécnico Colombiano Jaime Isaza Cadavid