Diseño de un controlador LQG para un helicóptero de tres grados de libertad
DOI:
https://doi.org/10.33571/rpolitec.v15n28a5Palavras-chave:
Helicóptero 3 DOF, Linealización, Control LQG, Control digitalResumo
El artículo presenta el diseño de un controlador lineal cuadrático gaussiano (LQG) para regular los ángulos de elevación, cabeceo y viaje de un prototipo de un helicóptero de tres grados de libertad (3 DOF). El controlador LQG se ajusta en base del modelo matemático no lineal y se evalúa la respuesta transitoria del sistema en lazo cerrado para diferentes valores de la señal de referencia, ajustando los parámetros del controlador con el objetivo de estabilizar el sistema, disminuir el sobrepaso y el tiempo de establecimiento. La validación experimental de la estrategia de control se realiza sobre un prototipo construido por los autores, la respuesta transitoria de los datos simulados se compara con los datos experimentales, para los tres grados de libertad del helicóptero, observando que el modelo matemático se ajusta a la dinámica del prototipo y se cumplen las condiciones de diseño.
This paper presents the design of a linear quadratic gaussian (LQG) controller to regulate the pitch, elevation and travel angles of a helicopter with three degrees of freedom (3 DOF). The LQG controller was designed on the basis of a linear model and the regulator parameters were adjusted based on the simulations performed with the non-linear model, evaluating the transient response of the system in the closed loop for different values of the reference signal, guaranteeing obtain the greatest variation of the angles around the equilibrium point. The experimental validation was done using a prototype built by the authors; the transient response of the simulated data was compared against the experimental data, for the three degrees of freedom of the helicopter, observing that the mathematical model adjusts to the dynamic of the prototype and the conditions of design were fulfilled.
Métricas do artigo
Resumo: 663 HTML (Español (España)): 1073 PDF (Español (España)): 474 XML (Español (España)): 84Métricas PlumX
Referências
Arıcan, A. Ç., Ozcan, S., Kocagil, B. M., Güzey, Ü. M., & Salamci, M. U. (2017, October). Suboptimal control of a 3 dof helicopter with state dependent riccati equations. In 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT) (pp. 1-6). IEEE.
Liu Hao, Yu Yao, Lu Geng, Zhong Yisheng. “Robust LQR attitude control of 3 DOF helicopter”. Proceedings of the 29th Chinese Control Conference. July 29-31, 2010, Beijing, China. DOI: 10.1109/TIE.2012.2216233
R. I. Boby, H. Mansor, T. S. Gunawan, S. Khan. “Robust Adaptive LQR Control of Nonlinear System Application to 3-Dof Flight Control System”. Proceedings of the IEEE International Conference on Smart Instrumentation, Measurement and Applications. DOI: 10.1109/ICSIMA.2014.7047443
Ameerul Hakeem Mohd Hairon, Hasmah Mansor, Teddy Surya Gunawan, Sheroz Khan. “Robust Control of Bench-top Helicopter Using Quantitative Feedback Theory”. TELKOMNIKA Indonesian Journal of Electrical Engineering, pp 500 - 507. 2015. DOI: 10.11591/telkomnika.v14i3.7899
Lei Yang, Lidong Zhang, Qing Li. “Design and application of fuzzy sliding mode control in the 3-DOF helicopter”. International Workshop on Intelligent Systems and Applications, ISA 2009. DOI: 10.1109/IWISA.2009.5072806.
Zhichao Liu, Zouhair Choukri, Hongbo Shi. “Control strategy design base on fuzzy logic and LQR for 3 DOF helicopter model”. International Conference on Intelligent Control and Information Processing, ICICIP 2010. DOI: 10.1109/ICICIP.2010.5564250
Kamil Karaman, Yusuf Talha Bekaroğlu, Mehmet Turan Söylemez, Kemal Uçak, Gülay Öke Günel. “Control 3 DOF helicopter via fuzzy PID controller”. 9th International Conference on Electrical and Electronics Engineering, ELECO 2015. DOI: 10.1109/ELECO.2015.7394494
González Hernando, Arizmendi Carlos, García Joan, Angulo Alexander, Herrera Cristian. “Design and Experimental Validation of Adaptive Fuzzy PID Controller for a Three Degrees of Freedom Helicopter”. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). ISBN 978-1-5090-6020-7. 2018
K. Takamuku, M. Ishitobi*, T. Kumada, M. Nishi and S. Kunimatsu. “Redesign Implementation of a Nonlinear Sampled-Data Controller for a 3-DOF Model Helicopter”. SICE Annual Conference 2011.
Jerry Ginsberg. “Engineering Dynamics”. Cambridge University Press. 2008. ISBN:13: 9780521883030
Katsuhiko Ogata. “Ingeniería de Control Moderna”. Quinta Edición. Pearson Educación, 2010. ISBN: 9788483226605
Katsuhiko Ogata. “Sistemas de control en tiempo discreto”. Segunda Edición. Pearson Educación, 1995. ISBN: 9688805394
Roland S. Burns. “Advanced Control Engineering”. Butterworth-Heinemann Books. ISBN 978-0-7506-5100-4. 2001. DOI 10.1016/B978-0-7506-5100-4.X5000-1
Shamsul Aizam Zulkifli, Mohd Najib Hussin, Abdul Salam Saad. “MATLAB-Arduino as a low cost microcontroller for 3 phase inverter”. IEEE Student Conference on Research and Development (SCOReD), 2014.
González L. Juan Carlos, León S. Gabriel, Huamani N. Pedro. “Designing of control using Matlab and Arduino for a electrohydraulic system from seismic simulation”. IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2017