Deconvolution and kinetic analysis of the thermoluminescent curve of the Lithium Borate system (Li2B4O7:Cu)

Authors

  • Omar Darío Gutiérrez Flórez Instituto Tecnológico Metropolitano
  • Nancy Montes Valencia Institución Universitaria Pascual Bravo

Keywords:

Thermoluminescence, logistic asymmetric function, TL curve deconvolution, kinetic parameters, recombination

Abstract

Lithium borates (Li2B4O7:Cu) are highly promising matrices in the field of biomedical sciences for the development of dosimeters. In this work the thermoluminescent glow curve (TL) of these systems was studied by using a deconvolution analysis with logistic asymmetric functions (DLAF); in order to determine the kinetic parameters and to explain the TL behavior of the material. DLAF analysis revealed nine individual TL curves as responsible for the whole experimental TL curve. According to the obtained kinetic orders, recombination processes were the predominant phenomena during the TL emission. FOM value (goodness of fit) of 2.1% confirms the validity of the DLAF as kinetic analysis method and, by doing so, it is very useful for the modeling and simulation of TL activity and sensitivity allowing the design of “tailor-made” dosimeters for specific applications.

Article Metrics

|Abstract: 464 | HTML (Español (España)): 132 | PDF (Español (España)): 400 | XML (Español (España)): 24 |

Author Biographies

Omar Darío Gutiérrez Flórez, Instituto Tecnológico Metropolitano

Ph.D(c) en Ciencias de la Ingeniería-Ingeniería Química, Profesor Asociado, Instituto Tecnológico Metropolitano, e-mail: omargutierrez@itm.edu.co.

Nancy Montes Valencia, Institución Universitaria Pascual Bravo

MSc. Ciencias Química, Docente Auxiliar, Institución Universitaria Pascual Bravo, e-mail:
nmontes@pascualbravo.edu.co.

References

Mobit, P. N., Kron, T. Microdosimetric response of physical and biological systems to low- and highlet radiations: theory and applications to dosimetry. En: Applications of Thermoluminescent Dosimeters in Medicine, Elsevier B.V., 413-416, 2006.

Kortov, V.S., Ermakov, A.E., Zatsepin, A.F., Nikiforov, S. V. Luminescence properties of nanostructured alumina ceramic, Radiat. Meas., 43, 341-348, 2008.

Bradley, D.A., Siti Shafiqah A.S., Siti Rozaila Z., Sabtu, S.N., Abdul Sani, S.F., Alanazi, A.H., Jafari, S.M., Amouzad Mahdiraji G., Mahamd Adikan, F.R., Maah, M.J, Nisbet, A.N., Tamchek, N., Abdul Rashid, H.A., Alkhorayef, M., Alzimami, K. Developments in production of silica-based thermoluminescence dosimeters, Radiation Phys. Chem., 2016.

Liu, Q., Yang, Q., Zhao, G., Lu, S. Titanium effect on the thermoluminescence and optically stimulated luminescence of Ti,Mg:α-Al2O3 transparent ceramics, J. alloy comp., 582, 754-758, 2014.

Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry, John Wiley and Sons, New York,1986.

Depci, T., Özbayoğlu, G., Yilmaz, A., Yazici, A.N. The thermoluminescent properties of lithium triborate (LiB3O5) activated by aluminium, Nucl. Instrum. Meth. B, 266,755–762, 2008.

Ozdemir, A., Yegingil, Z., Nur, Kurt, NK., Tuken, T., Depci, T., Tansug, G., Altunal,V., Guckan,V., Sigircik, G., Yu, Y., Karatasli, M., Dolek,Y. Thermoluminescence study of Mn doped lithium tetraborate powder and pellet samples synthesized by solution combustion synthesis, J. lumen., 173,149-158, 2016.

Seth, P., Rajput, S., Rao, S.M.D., Aggarwal, S. Investigations of thermoluminescence properties of multicrystalline LiF: Mg, Cu, Si phosphor prepared by edge defined film fed growth technique, Radiat. Meas., 84, 9–14, 2016.

Caselli, E., Marcazzó, J., Furetta, Spano, C. F., Henniger, J., Santiago, M. An efficient algorithm for computerized deconvolution of thermoluminescent glow curves, Radiat. Meas., 46, 1602–1606, 2011.

Abd El-Hafez, A.I., Yasin, M.N., Sadek, A.M. GCAFIT—A new tool for glow curve analysis in thermoluminescence nanodosimetry, Nucl. Instrum. Meth. A, 637, 158–163, 2011.

Furetta, C., Prokic, M., Salamon, R., Prokic, V., Kitis, G. Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate, Nucl. Instrum. Meth. A, 456, 411-417, 2001.

Anishia, S.R., Jose, M.T., Annalakshmi, O., Ponnusamy, V., Ramasamy, V. Dosimetric properties of rare earth doped LiCaBO3 thermoluminescence phosphors, J. Lumin., 130,1834–1840, 2010.

Srivastava, J.K., Supe, S. The thermoluminescence characterisation of Li2B4O7 doped with Cu, J. Phys. D Appl. Phys., 22,1537-1543, 1989.

Kelemen, A., Mesterházy, D., Ignatovych, M., Holovey, V. Thermoluminescence characterization of newly developed Cu-doped lithium tetraborate materials, Radiat. Phys. Chem, 81, 1533–1535, 2012.

Hemam, R., Singh, L.R., Prasad, A.I., Gogoi, P., Kumar, M., Chougaonkar, M.P., Singh, S.D., Sharan, R.N. Critical view on TL/OSL properties of Li2B4O7 nanoparticles doped with Cu, Ag and codoping Cu, Ag: Dose response study, Radiat. Meas, 95, 44–54, 2016.

Jose, M.T., Anishia, S.R., Annalakshmi, O., Ramasamy, V. Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate, Radiat. Meas., 46, 1026-1032, 2011.

Kitis, G., Furetta, C., Prokic, M., Prokic, V. Kinetic parameters of some tissue equivalent thermoluminescence materials, J. Phys. D. Appl. Phys, 33, 1252–1262, 2000.

Ege, A. (Türkler)., Ekdal, E., Karali, T., Can, N. Determination of thermoluminescence kinetic parameters of Li2 B4 O7 : Cu, Ag, P, Radiat. Meas, 42, 1280–1284, 2007.

Chopra, V., Singh, L., Lochab, S.P. Thermoluminescence characteristics of gamma irradiated Li2B4O7:Cu nanophosphor, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, 717, 63–68, 2013.

Ekdal, E., Karali, T., Kelemen, A., Holovey, V., Ignatovych, M. Evaluation Of kinetic parameters Of Li2B4O7:Mn single crystal, J. Alloys Compd, 588, 413–417, 2014.

Kafadar, V.E., Yildirim, R.G., Zebari, H., Zebari, D. Investigation of thermoluminescence characteristics of Li2B4O7:Mn (TLD-800), Thermochim. Acta, 575, 300–304, 2014.

Palan, C.B., Chauhan, A.O., Sawala, N.S., Bajaj, N.S., Omanwar, S.K. Synthesis and preliminary TL/OSL properties of Li2B4O7: Cu-Ag phosphor for radiation dosimetry, Optik (Stuttg), 127, 6419–6423, 2016.

V. Pagonis, G. Kitis, Fit of second order thermoluminescence glow peaks using the logistic distribution function, Radiat. Prot. Dosimetry, 101, 93–98, 2002.

Osorio, E., Gutierrez, O. , Paucar,C., Hadad, C. Thermoluminescence glow curves analysis of pure and CeO2-doped Li2O–Al2O3–SiO2 glass ceramics, J. Lumin., 129, 657-660, 2009.

Pagonis, V. , Kitis, G. On the possibility of using commercial software packages for thermoluminescence glow curve deconvolution analysis, Radiat. Prot. Dosim., 101(1-4), 93-98, 2002.

Pagonis,V. , Mian, S.M., Kitis, G. Fit of first order thermoluminescence glow peaks using the weibull distribution function Radiat. Prot. Dosim., 93,11-17, 2001.

Kitis,G., Gómez-Ros , J. M. Gómez-Ros, Tuyn,J.W.N.Thermoluminescence glow curve deconvolution functions for first second and general order kinetics, J. Appl. Phys., 31, 2636-2641, 1998.

Rasheedy, M.S., A new evaluation technique for analyzing the thermoluminescence glow curve and calculating the trap parameter, Thermochim.

Acta, 429, 143-147, 2005.

Rasheedy, M.S., El-Sherif, M.A., Hefni, M.A. Determination of the trapping parameters of thermoluminescent glow peaks of K2YF5:Ce by three points method, Nucl. Instrum. Meth. A, 258, 440–444, 2007.

Raboanary, A.J.F R., Andriambololona, R. Quartz glow-peaks lifetime analysis: Tl glow-curve deconvolution functions for first order of kinetic compared to Initial Rise Method, HEPMAD’04 Conference. Madagascar, 1-5, septiembre 2004.

Prokic, M. Lithium borate solid TL detectors, Radiat. Meas., 33, 393–396, 2001.

Published

2016-12-30

How to Cite

Gutiérrez Flórez, O. D., & Montes Valencia, N. (2016). Deconvolution and kinetic analysis of the thermoluminescent curve of the Lithium Borate system (Li2B4O7:Cu). Revista Politécnica, 12(23), 99–106. Retrieved from https://revistas.elpoli.edu.co/index.php/pol/article/view/904

Issue

Section

Articles