Modelo de piel, músculo y vena para entrenamiento de punción subclavia en acceso venoso central en pediatría

  • Lizeth Vega-Medina Universidad Distrital Francisco José de Caldas
  • Byron Perez- Gutiérrez Universidad Militar Nueva Granada
  • Luz Helena Camargo Universidad Distrital Francisco José de Caldas
Palabras clave: Acceso Venoso Central, silicona, pediatría, propiedades elásticas, simulador

Resumen

Un simulador de un procedimiento mínimamente invasivo debe representar con fidelidad las características de los tejidos involucrados. En este artículo se presenta un modelo físico de la piel, músculo y vena para un simulador de punción subclavia de acceso venoso central en pediatría implementado con silicona de platino, la cual se puede pigmentar para dar un aspecto realista, es elástica, durable y se auto sella después de ser perforada por una aguja. Se evaluaron las propiedades de elasticidad del material empleado con una prueba de tracción en el prototipo desarrollado encontrando un módulo de elasticidad promedio de 10MPa, valor ubicado dentro de lo reportado en la literatura para el tejido humano, además se realizaron pruebas de punción y corte. También se evaluó su aspecto visual y sensación táctil a la palpación por potenciales usuarios del simulador, encontrándolo similar a los tejidos reales de la zona subclavia de un paciente pediátrico.

Biografía del autor/a

Lizeth Vega-Medina, Universidad Distrital Francisco José de Caldas
Ingeniera Mecatrónica, Especialista en Bioingeniería, correo electrónico: lizvega@ieee.org.
Byron Perez- Gutiérrez, Universidad Militar Nueva Granada
Ingeniero Electrónico, M.Sc. en ingeniería, correo electrónico: Byron.perez@ieee.org
Luz Helena Camargo, Universidad Distrital Francisco José de Caldas
M.Sc. en ingeniería Biomédica. Grupo de Investigación ingeniería y nanotecnología para la vida, correo electrónico: lhcamargoc@udistrital.edu.co

Citas

Rao, S. y Hogan, M. J. (2010). Transbrachial access for radiologic manipulation of problematic central venous catheters in a pediatric population. Cardiovascular and interventional radiology, 33 (4), 756–759.

Walser, E.M. (2012). Venous access ports: indications, implantation technique, follow-up, and complications. Cardiovascular and interventional radiology, 35(4), 751–764.

Chamorro, L., Plaza, L. D., Valencia, C. P., y Caicedo, Y. (2005). Fortalezas y debilidades en el manejo del catéter venoso central en una unidad de cuidados intensivos neonatales. Colombia Médica, 36(3), 25–32.

Engum, S. A., Jeffries, P., y Fisher, L. (2003). Intravenous catheter training system: Computer-based education versus traditional learning methods. The American Journal of Surgery, 186(1), 67–74.

Park, J., MacRae, H., Musselman, L. J., Rossos, P., Hamstra, S. J. Wolman, S. y Reznick, R. K. (2007). Randomized controlled trial of virtual reality simulator training: transfer to live patients. The American journal of surgery, 194(2), 205–211.

Vogel, J. J., Vogel, D. S, Cannon-Bowers, J. Bowers, C. A, Muse, K., y Wright, M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34 (3), 229–243.

Lander, A. y Newman, J. (2013). Paediatric anatomy. Surgery (Oxford), 31 (3), 101–105.

Bastir, M., Martínez, G., Recheis, W., Barash, A., Coquerelle, M., Rios, L., Peña-Melián, Á., Río, F. G., y Higgins, P. O. (2013). Differential growth and development of the upper and lower human thorax. PloS one, 8 (9), e75128. http://dx.doi.org/10.1371/journal.pone.0075128

Corporation, S. (2014). Centralineman system. S. Corporation. 1600 West Armory Way, Seattle, WA 98119. Obtenido de:

http://www.simulab.com/product/ultrasoundtrainers/centralineman-system (noviembre, 2015).

McGee, D. C. y Gould, M. K. (2003). Preventing complications of central venous catheterization. New England Journal of Medicine, 348 (12), 1123–1133.

Franceschi, A. T., y Cunha, M. L. (2010). Adverse events related to the use of central venous catheters in hospitalized newborns. Revista latino-americana de enfermagem, 18(2) ,196–202

Rutter, N. (2003). Applied physiology: the newborn skin. Current Paediatrics, 13(3), 226–230.

Payne, P. A. (1991). Measurement of properties and function of skin. Clinical Physics and Physiological Measurement, 12(2), 105.

Manschot, J., y Brakkee, A. (1986). The measurement and modelling of the mechanical properties of human skin in vivo the model. Journal of Biomechanics, 19(7), 517–521.

Agache, P., Monneur, C., Leveque, J., y De Rigal, J. (1980). Mechanical properties and young’s modulus of human skin in vivo. Archives of dermatological research, 269 (3), 221–232.

Hendriks, F., Brokken, D., Van Eemeren, J., Oomens, C., Baaijens, F., y Horsten, J. (2003). A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin research and technology, 9(3), 274–283.

Pailler-Mattei, C., Bec, S., y Zahouani, H. (2008) Measurements of the elastic mechanical properties of human skin by indentation tests. Medical engineering & physics, 30(5), 599–606

King, A., Balaji, S., y Keswani, S. G. (2013). Biology and function of fetal and pediatric skin. Facial plastic surgery clinics of North America, 21(1), 1–6.

Hill, A. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 136–195.

Pérez, B. A. et al. (2014), Simulación de la inserción de una aguja en un tejido con realimentación de fuerza. Universidad Militar Nueva Granada. Obtenido en:

http://repository.unimilitar.edu.co/bitstream/10654/11556/1/Simulaci%C3%B3n%20de%20la%20inserci%C3%B3n%20de%20una%20aguja%20en%20un%20tejido%20con%20realimentaci%C3%B3n%20de%20fuerza.pdf (marzo 2016)

Sayin, M. M., Mercan, A., Koner, O., Ture, H., Celebi, S. Sozubir, S., y Aykac, B. (2008). Internal jugular vein diameter in pediatric patients: are the j-shaped guidewire diameters bigger than internal jugular vein an evaluation with ultrasound. Pediatric Anesthesia, 18(8), 745–751.

McDowell, R. H. (1961). Properties of alginates. Londres, Inglaterra: Alginate Industries Ltd (2nd Ed.).

Lee, K. Y., y Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in polymer science, 37(1), 106–126.

Zdrahala, R. J., y Zdrahala, I. J. (1999). Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. Journal of biomaterials applications, 14(1), 67–90.

Brydson, J. A. (1999). Plastics materials. Oxford, Inglaterra: Butterworth-Heinemann (7th Ed.).

Cohen, J. C., Koenig, D. W., Kromenaker, F. F., Pilecky, R. C., y Satori, C. P. (2009). Mannequin with more skin-like properties. US Patent No 7 549 866

Zou, J., y Fang, J. (2011). Adhesive polymer-dispersed liquid crystal films. Journal of Materials Chemistry, 21(25), 9149–9153.

Steward, P., Hearn, J. y Wilkinson, M. (2000). An overview of polymer latex film formation and properties. Advances in colloid and interface science, 86(3), 195–267.Tamayo, M., y Tamayo. (2007) Metodología de la investigación. México: Editorial Limusa (2da ed.).

Nass, L. I. (1992). Encyclopedia of PVC: Compounding Processes, Product Design, and Specifications. Mishawaka, USA: CRC Press, 3.

Braley, S. (1970). The chemistry and properties of the medical-grade silicones. Journal of Macromolecular Science Chemistry, 4(3), 529–544.

Tamayo M. y Tamayo, “Metodología de la investigación,” Editorial Limusa. 2da Edición. México, 2007

MacDonald, M. G., Ramasethu, J., y Rais-Bahrami, K. (2012). Atlas of procedures in Neonatology. Philadelphia, USA: Lippincott Williams & Wilkins (5th ed.).

Ogden, R. (1972). Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567), 565–584.

Mahmud, L., Ismail, M., Manan, N., y Mahmud, J. (2013). Characterisation of soft tissues biomechanical properties using 3d numerical approach. Business Engineering and Industrial Applications Colloquium (BEIAC), IEEE, 801–806

Mooney, M. (1940). A theory of large elastic deformation. Journal of applied physics, 11 (9), 582–592.

Calvo Plaza, F. J. (2006). Simulación del flujo sanguíneo y su interacción con la pared arterial mediante modelos de elementos finitos. Universidad Politecnica de Madrid, Tesis por el título PhD. Obtenido de:

http://oa.upm.es/443/1/FRANCISCO_JOSE_CALVO_PLAZA.pdf (marzo 2016)

Hamburg. G. (2005). Universal material tester, 20kN. Gunt Hamburg. Obtenido en: http://www.gunt.de/static/s3648_1.php (marzo 2016)

Caruselli, M., Carboni, L., Franco, F., Torino, G., Camilletti, G., Piattellini, G., Giretti, R., y Pagni, R. (2010). Central venous catheters in neonates: from simple monolumen to port catheter. The journal of vascular access, 12(1), 4–8.

Publicado
2016-06-30
Cómo citar
Vega-Medina, L., Perez- Gutiérrez, B., & Camargo, L. H. (2016). Modelo de piel, músculo y vena para entrenamiento de punción subclavia en acceso venoso central en pediatría. Revista Politécnica, 12(22), 41-50. Recuperado a partir de https://revistas.elpoli.edu.co/index.php/pol/article/view/875
Sección
Artículos

Métricas de Artículo

Resumen : 510   HTML : 119  PDF : 511