Efecto de pre-oxidación con dióxido de cloro sobre la formación de trihalometanos y ácidos haloacéticos en un sistema de agua potable

  • Diana Marina Salazar Serna Universidad de Antioquia
Palabras clave: agua potable, materia orgánica, pre-oxidación, trihalometanos, ácidos haloacéticos, subproductos de desinfección

Resumen

La reacción entre desinfectantes y materia orgánica acuática generan subproductos de desinfección (DBPs). DBPs son motivo de preocupación en el agua potable debido a que causan daños a la salud. Esta investigación busca determinar el efecto de la pre-oxidación con ClO2 en un proceso convencional a escala de laboratorio, sobre la formación de DBPs: trihalometanos (THMs) y ácidos haloacéticos (HAAs). Se realizaron ensayos con agua de un embalse que surte una planta de tratamiento convencional de agua potable, en diferentes épocas climáticas debido a su influencia sobre la naturaleza de la materia orgánica. La aplicación de 0.3 mg/L ClO2 y la dosis de coagulante óptima para remover materia orgánica, arrojó los mejores resultados, 37 μg/L de THMs y 22 μg/L de HAAs, excepto en la época seca. Se encontró que dosis mayores de ClO2 incrementaron los DPBs. Las dosis óptimas de coagulante y de ClO2 deben ser cuidadosamente definidas.

Biografía del autor/a

Diana Marina Salazar Serna, Universidad de Antioquia
Magister (c) en Ingeniería con énfasis en ambiental Facultad de Ingeniería Universidad de Antioquia., Grupo Diagnóstico y Control de la Contaminación – GDCON. dmsalazars@gmail.com. Medellín, Colombia.

Citas

Matilainen, A., Gjessing, E., Lahtinen, T., Hed, L., Bhatnagar, A. and Sillanpää, M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83, 1431-1442, 2011.

Sillanpää M. Natural Organic Matter in Water, Characterization and Treatment Methods Butterworth-Heinemann. . 2014.

Rosario-Ortiz, F. L., Snyder, S. A. and Suffet, I. H. Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries. Water Res., 41, 4115-4128, 2007.

Kim, H.-C. and Yu, M.-J. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Res., 39, 4779-4789, 2005.

Chu, W., Yao, D., Gao, N., Bond,T., andTempleton, M. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment, Chemosphere, 141, 1-6, 2015.

Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R. and Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol., 4702 - 4708, 2003

. Lin, P., Zhang, X., Wang, J., Zeng, Y., Liu, S., and Chen C. Comparison of different combined treatment processes to address the source water with high concentration of natural organic matter during snowmelt period, J Environ. Sci., 27, 51-58, 2015.

Richardson, S. D. and Postigo, C. Drinking Water Disinfection By-products Springer Berlin / Heidelberg, City, 2012.

. Stalter, D., O'Malley, E., Gunten, U., Escher, B. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products, Water Res., 91, 19-30, 2016.

Tubić, A., Agbaba, J., Dalmacija, B., Molnar, J., Maletić, S., Watson, M. and Perović, S. U. Insight into changes during coagulation in NOM reactivity for trihalomethanes and haloacetic acids formation. J Environ Manage., 118, 153-160, 2013.

Matilainen, A., Lindqvist, N., Korhonen, S. and Tuhkanen, T. Removal of NOM in the different stages of the water treatment process. Environ Int., 28, 457-465, 2002.

Liu, H., Liu, R., Tian, C., Jiang, H., Liu, X., Zhang, R. and Qu, J. Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study. Sep Purif Technol., 84, 41-45, 2012.

Xie, Y. F. Disinfection byproducts in drinking water: Formation, analysis, and control. CRC press, 2004.

Hua, G. and Reckhow, D. A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res., 41, 1667-1678, 2007.

Matilainen, A., Vepsäläinen, M. and Sillanpää, M. Natural organic matter removal by coagulationduring drinking water treatment: A review. Adv. Colloid Interface Sci., 159, 189-197, 2010.

Camel, V. and Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res., 32, 3208 - 3222, 1998.

Yang, X., Guo, W. and Lee, W. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter. Chemosphere, 91, 1477-1485, 2013.

Yang, X., Guo, W., Zhang, X., Chen, F., Ye, T. and Liu, W. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate. Water Res., 47, 5856-5864, 2013.

Awad, J., Leeuwen, J., Liffner, J., Chow, C. and

Drikas, M. Treatability of organic matter derived from surface and subsurface waters of drinking water catchments. Chemosphere 144, 1193-1200, 2016.

Korshin, G., Chow, C. W. K., Fabris, R. and Drikas, M. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic. Water Res., 43, 1541-1548, 2009.

Chow, C. W. K., van Leeuwen, J. A., Fabris, R. and Drikas, M. Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon. Desalination, 245, 120-134, 2009.

Volk Christian, Bell Kimberly, Ibrahim Eva, Debbie Verges, Amy Gary and Mark, L. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Res., 34, 3247 - 3257, 2000.

Duan, J. and Gregory, J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci., 100–102, 475-502, 2003.

Ghernaout, D. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review. J King Saud Univ Sci., 26, 169-180, 2014.

Singer, P. C. Formation and control of disinfection by-products in drinking water. AWWA, 1999.

Bond, T., Henriet, O., Goslan, E. H., Parsons, S. A. and Jefferson, B. Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates. Environ. Sci. Technol., 43, 5982-5989, 2009.

Hua, G., Kim, J. and Reckhow, D. A. Disinfection byproduct formation from lignin precursors. Water Res., 285-295, 2014.

Ye, B., Wang, W., Yang, L., Wei, J. and E, X. Factors influencing disinfection by-products formation in drinking water of six cities in China. J Hazard Mater., 171, 147-152, 2009.

Zhao, H., Hu, C., Liu, H., Zhao, X. and Qu, J. Role of Aluminum Speciation in the Removal of Disinfection Byproduct Precursors by a Coagulation Process. Environ. Sci. Technol., 42, 5752-5758, 2008.

Hong, H. C., Huang, F. Q., Wang, F. Y., Ding, L. X., Lin, H. J. and Liang, Y. Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation. J Hydrol., 476, 274-279, 2013

Leenheer, J. A. and Croué, J.-P. Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter. Environ. Sci. Technol., 37, 18A-26A, 2003.

Publicado
2016-06-30
Cómo citar
Salazar Serna, D. M. (2016). Efecto de pre-oxidación con dióxido de cloro sobre la formación de trihalometanos y ácidos haloacéticos en un sistema de agua potable. Revista Politécnica, 12(22), 9-20. Recuperado a partir de https://revistas.elpoli.edu.co/index.php/pol/article/view/872
Sección
Artículos

Métricas de Artículo

Resumen : 521   HTML (English) : 69  PDF (English) : 147