Estudio de la aplicación de los metamateriales en el diseño de atenas textiles

Autores/as

  • Leidy Xiomara Sanchez Torres Instituto Tecnológico Metropolitano
  • Claudia Herrera Instituto Tecnológico Metropolitano
  • María Restrepo Instituto Tecnológico Metropolitano

DOI:

https://doi.org/10.33571/rpolitec.v15n29a9

Palabras clave:

antenas textiles, metamateriales, innovación, tecnología

Resumen

Este articulo presenta una revisión documental concerniente al diseño de antenas textiles a través del uso de metamateriales; mencionando también los tipos de antenas, sus técnicas de implementación, su elaboración, los materiales para su construcción y la fuente de trabajo o sustento de cada una de ellas.Dichas antenas están construidas por metamateriales los cuales funcionan como un conductor textil compuestos con otros materiales textiles que trabajan como un sustrato y son favorables al ser livianas, flexibles, fáciles de producir, prácticamente económicas y fácilmente aplicable en una prenda. Estos textiles (e-textiles), cuentan con componentes electrónicos e interconexiones tejidas en ellos, tienen flexibilidad física y tamaño reducido, que no se pueden conseguir en otros tipos de técnicas de fabricación electrónica existentes.

This document presents a documentary review concerning the design of textile antennas through the use of metamaterials; also mentioning the types of antennas, their implementation techniques, their preparation, the materials for their construction and the source of work or sustenance of each of them.Said antennas are constructed by metamaterials which function as a textile conductor composed with other textile materials that work as a substrate and are favorable because they are light, flexible, easy to produce, practically economical and easily applicable in a garment.These textiles (e-textiles), have electronic components and interconnections woven into them, have physical flexibility and typical size that can´t be achieved in other types of existing electronic manufacturing techniques.

Métricas de artículo

 Resumen: 984  HTML: 3947  PDF: 512  XML: 66 

Métricas PlumX

Biografía del autor/a

Leidy Xiomara Sanchez Torres, Instituto Tecnológico Metropolitano

Tecnóloga de Telecomunicaciones

Claudia Herrera, Instituto Tecnológico Metropolitano

Tecnóloga de Telecomunicaciones

María Restrepo, Instituto Tecnológico Metropolitano

Tecnóloga de Telecomunicaciones

Citas

S. R. M. Beyer, Antenas Textiles, Valparaiso: Pontificia universidad catolica de valparaiso, 2014.

S. Yan, V. Volskiy y Member, «Compact Dual-Band Textile PIFA for 433-MHz/2.4-GHz ISM Bands,» 2017. [En línea].

F. Pizarro, A. Leiva y M. Rodrıguez, «Dual-Band Textile Patch Antenna for GSM-WiFi Bands Using EVA-Foam as Substrate,» Pontificia Universidad Catolica de Valparaıso, Chile, 2016.

B. Babusiaka, S. Borika y L. Balogovab, «Textile electrodes in capacitive signal sensing applications,» 2017.

J. Virkki, Z. Wei, A. Liu, L. Ukkonen y T. Björninen, «Wearable Passive E-Textile UHF RFID Tag Based on a Slotted Patch Antenna with Sewn Ground and Microchip Interconnections,» Ming-ChunTang, 2017.

D. Ferreira y P. Pires, «Wearable textile Antennas,» Digital Object Identifier, 2017.

E. Asensio, «Estructura EBG para disminución de la radiación en parches,» Universidad Carlos III de Madrid, Leganes, 2012.

R. M. F. M. J. &. M. F. Marques, «Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments,» IEEE Trans. Ant. Propagat, pp. 2572-2581, 2003.

Ministerio de la defensa, «Los metamateriales y sus aplicaciones en defensa,» Monografías del SOPT, pp. 1-142, 2011.

W. Hidalgo, «Diseño de antenas planares para tags RFID pasivos en bandas UHF sobre sustrato polimérico con características de flexibilidad y transparencia para la aplicación en sistema de transporte inteligente,» Universidad Nacional de Colombia , Bogota, 2017.

L. &. L. J. L. Wang, «A Novel Metamaterial Microstrip Antenna of Broadband and High-Gain,» Proceedings of ISAP2012, pp. 806-809, 2006.

B.-I. W. W. P. J. C. X. G. T. M. &. K. J. A. Wu, «A study of using metamaterials as antenna substrate to enhance gain,» Progress In Electromagnetics Research., pp. 295-328., 2005.

J. S. J. P. S. D. E. &. Y.-K. Y. Xiaoyu Cheng, «Reconfigurable split ring resonator array loaded waveguide for insitu tuning,» IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 2947-2950, 2011.

R. Zhou y H. &. Z. H. Xin, «Liquid-based dielectric resonator antenna and its application for measuring liquid real permittivities,» Microwaves, Antennas Propagation, p. 255–262, 2014.

R. Salvado, C. Loss, R. Gonçalves y P. Pinho, «Textile Materials for the Design of Wearable Antennas,» Sensors, 2012.

M. Stoppa y A. Chiolerio, «Wearable Electronics and Smart Textiles: A Critical Review,» Sensors, 2014.

H. Kaschel, «Design of a tri-band antenna microstrip for a WBAN the low SAR,» Universidad de Santiago de Chile, 2016.

J. Santiso, «DISEÑO DE UNA ANTENA MULTIMODO SOBRE SUBSTRATO TEXTIL PARA APLICACIONES CORPORALES,» Universidad Politecnica de Valencia, Valencia, 2010.

L. Castellanos y F. López, «Metamateriales: principales características y aplicaciones,» Rev. Acad. Colombia, 2016.

R. O. R. E. J. D. A. R. F. K. &. T. A. Ouedraogo, «Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique,» IEEE Transactions on Antennas and Propagation, pp. 2175-2182., 2012.

F. M. a. R. R.-E.-I. R. Marqués, ««Role of bianisotropy in negative permeability and left-handed metamaterials,»,» Physical Review B, vol. 6, pp. 144-440, 2002.

J. M. F. M. a. F. M. R. Marqués, «Left-handed-media simulation and transmission of EM waves in sub-wavelength split-ring resonator loaded metallic waveguides,» Physical Review Letters, pp. 18-28, 2002.

Q. W. B.-S. J. W. H.-L. &. J. Fan-Yi Meng, «Comments on “Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial,» IEEE Transactions on Antennas and Propagation, p. 55, 2007.

Z. A. L. V. &. N. E. Jacob, «Optical Hyperlens: Far-field imaging beyond the diffraction limit.,» Optics Express, p. 14, 2006.

S. C. K. L. &. A. P. Chaimool, «Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface,» Progress In Electromagnetics Research B, pp. 23-37, 2010.

Y.-A. C. I.-L. &. C. L.-W. Chen, «Spiral hyperlens with enhancements of image resolution and magnification,» Journal of Modern Optics, pp. 1029-1034, 2016.

X. S. D. E. K. C. &. Y. Y.-K. Cheng, «A Compact Omnidirectional Self-Packaged Patch Antenna With Complementary Split-Ring Resonator Loading for Wireless Endoscope Applications.,» IEEE Antennas and Wireless Propagation Letters, pp. 10: 1532-1535, 2011.

M. C. D. &. R. E. Domínguez, «Design a sensor of relative dielectric permittivity of a medium using an antenna microstrip with metamaterial structures,» Actas de Ingeniería, pp. 110-114, 2015.

C. &. I. T. Caloz, «Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications.,» I. John Wiley & Sons, Ed.) (First.). Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

D. S. D. E. L. F. &. R.-V. E. Catano-ochoa, «erformance Analysis of a Microstrip Patch Antenna loaded with an Array of Metamaterial Resonators.,» IEEE International Symposium on Antennas and Propagation/ USNC-URSI National Radio Science, pp. 1-3, 2016.

A. E.Úbeda, ««Radiation pattero of composite finite arrays of conductingelements with anexcitingelementary dipole»,» IEEE Ante/mas Propagat. Sociery Int. Symp, pp. 379-382, 2003.

A. W. W. A.-S. S. &. A. D. Ebrahimi, «High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization.,» IEEEA Sensors Journal., p. 14, 2014.

J. B. F. F. M. S. a. R. M. F. Martin, ««Split ring resonator-based left-handed coplanar waveguide,»,» Applied Physicssics Letters, vol. 83, p. 4652–4654, 1 Diciembre 2003.

F. L. T. L. M. A. G. B. J. D. B. J. B. M. S. M. Falcone, «Babinet Principle Applied to the Design of Metasurfaces and Metamaterials,» Physical Review Letters, p. 93, 2004.

D. C. O. E. R. V. María Domínguez V., «Design a sensor of relative dielectric permittivity of a medium using an antenna microstrip with metamaterial structures,» Actas de Ingeniería, vol. 1, pp. 110-114, 2015.

D. W. W. S.M.Rao, «Electromagnetic scattering by surfaces of arbitrary shape,» IEEE Trans Antennas Propagar, pp. 409-418, 1982.

D. P. W. V. D. N.-N. S. &. S. Smith, «Composite Medium with Simultaneously Negative Permeability and Permittivity,» Physical Review Letters., vol. 84, pp. 4184-4187, 2000.

H. T. Chen, W. Padilla, J. Zide y A. Gossard, «Active terahertz metamaterial devices,» Nature, p. 597–600, 2006.

Y. Dong, «Metamaterial-Based Antennas,» IEEE, pp. 2271 - 2285, 2012.

T. &. R. O. M. Almoneef, «Split-ring resonator arrays for electromagnetic energy harvesting.,» Progress In Electromagnetics Research B, 62 (January), pp. 167-180, 2015.

J. D. B. J. M. F. S. R. M. F. F. L. T. S. M. Baena, «Equivalent-circuit models for split-ring resonators and complementary split ring resonators coupled to planar transmission lines,» IEEE Transactions on Microwave Theory and Techniques, p. 53, 2005.

M. Bogosanovich, «Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials,» IEEE Transaction Instrument Measurement, p. 1144–1148., 2000.

O. Y. T. &. O. J. Büyüköztürk, «A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,» Cement and Concrete Composites, p. 349–359, 2006.

M. &. A. M. Tauseef Asim, «Metamaterial Inspired Microstrip Antenna Investigations Using Metascreens,» International Journal of Antennas and Propagation, pp. 1-9, 2015.

J. Lesnikowski, «Dielectric Permittivity measurement methods of textile substrate of textile transmission lines,» Przeglad Elektrotechniczny, p. 148–151, 2012.

L.-W. L. Y.-N. S. Y. T. M. J. R. &. M. O. J. F. Li, «Addendum: A broadband and high-gain metamaterial microstrip antenna,» Applied Physics Letters, 2011.

S. Linden, «Magnetic Response of Metamaterials at 100 Terahertz,» Science, pp. 1351-1353., 2004.

S. E. C. D. G. K. M. W. Z. J. K. T. W. M. Linden, «Photonic Metamaterials Magnetism at Optical Frequencies,» IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, pp. 1097-1105.

V. Veselago, «The Electrodynamics of substances with simultaneously negative values of ε and μ.,» Soviet Physics Uspekhi, pp. 509-514, 1968.

G. E. J. S. K. H. D. L. J. S. P. U. Y. Lipworth, «Magnetic metamaterial superlens for increased range wireless power transfer,» Scientific Reports, p. 4: 3642, 2014.

F. L. E. R.-V. Luis M. Castellanos, «Metamateriales: principales características y aplicaciones,» Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Colombia, 2016.

C. C. C. a. T. I. C. Caloz, ««Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,» Journal of Applied Physics, p. 5483–5486, 2001.

a. R. W. Z. C. Y. Cheng, «Tailoring double-negative metamaterial responses to achieve anomalous propagation effects along microstrip transmission lines,» IEEE Trans. Microwave Theory & Tech., pp. 2306-2314, 2003.

C. Suárez, J. López y G. P. Leguizamón, «Antena plana para aplicaciones en las bandas L1 y L2 de GPS,» Revista Científica Ingeniería y Desarrollo, 2016.

E. Ú. y. J. R. J. M González-Arbesú, «METAMATERIALES EN MICROONDAS Y ANTENAS,» Universitat Politecnica de Catalunya, Campus, pp. 32-38, Diciembre 2003.

B. &. L. B. Kapilevich, «Application of resonant monopole antenna for determination of complex permittivity of liquids, powdered and granular materials,» Measurement, p. 1964–1969, 2013.

Publicado

2019-07-31

Cómo citar

Sanchez Torres, L. X., Herrera, C., & Restrepo, M. (2019). Estudio de la aplicación de los metamateriales en el diseño de atenas textiles. Revista Politécnica, 15(29), 108–127. https://doi.org/10.33571/rpolitec.v15n29a9

Número

Sección

Artículos

Artículos similares

> >> 

También puede {advancedSearchLink} para este artículo.