Revisión: Métodos para la cuantificación de la proteína Β-Lactoglobulina (β-LG)
DOI:
https://doi.org/10.33571/rpolitec.v20n40a3Palabras clave:
Globulinas, β-lactoglobulina, Proteínas de la leche, Proteínas de suero, Técnicas analíticasResumen
La β-lactoglobulina (β-LG) es la proteína que se encuentra en mayor proporción en el suero de leche y representa aproximadamente el 50% de la proteína total del suero y el 10% de la proteína total de la leche. La β-LG se caracteriza por ser una proteína globular de la familia de las lipocalinas, su función principal es la de transportar moléculas hidrofóbicas, además, es ampliamente estudiada por sus diversas propiedades tecnofuncionales, principalmente por su alto valor como ingrediente alimentario. Sin embargo, al no estar presente en la composición de la leche humana, es identificada como un alergeno, que puede representar un riesgo significativo en la salud de los lactantes. Por lo tanto, en los últimos años se han desarrollado varios métodos, que incluyen los espectrofotométricos, electroforéticos, inmunoensayos y cromatográficos para la separación y cuantificación de la β-LG en el lactosuero. Debido a que la cuantificación de esta proteína es fundamental para el procesamiento de la leche, la detección de productos lácteos adulterados y la generación de nuevos aportes en el campo de la investigación, es importante ampliar el conocimiento en cuanto a su fracción y al desarrollo de nuevos productos lácteos con propiedades específicas. En esta revisión se recopilan las diferentes metodologías y protocolos empleados en la cuantificación de la β-LG. Además, se discuten fundamentos, ventajas y limitaciones de cada uno de ellos, así como su proyección a futuro, con el fin de ampliar la visión respecto a la cuantificación de las proteínas del lactosuero en específico la β-LG
The β-lactoglobulin (β-LG) is the protein found in the highest proportion in whey and represents approximately 50% of the total whey protein and 10% of the total milk protein. The β-LG is characterized by being a globular protein of the lipocalin family, its main function is to transport hydrophobic molecules, in addition, it is widely studied for its various techno-functional properties, mainly for its high value as a food ingredient. However, since it is not present in the composition of human milk, it is identified as an allergen, which can represent a significant risk to the health of infants. Therefore, several methods have been developed in recent years, including spectrophotometric, electrophoretic, immunoassay and chromatographic methods for the separation and quantification of β-LG in whey. Because the quantification of this protein is fundamental for milk processing, detection of adulterated dairy products and generation of new contributions in the field of research, it is important to expand knowledge regarding its fraction and the development of new dairy products with specific properties. In this review, the different methodologies and protocols used in the quantification of β-LG are compiled. In addition, fundamentals, advantages and limitations of each one of them are discussed, as well as their future projection, in order to broaden the vision regarding the quantification of whey proteins, specifically β-LG.
Métricas de artículo
Resumen: 449 PDF: 271Métricas PlumX
Citas
F. Asunis, G. De Gioannis, D. Dessì, M, Isipato and D. Spiga, “The dairy biorefinery: Integrating treat-ment processes for cheese whey valorisation,” Journal of Environmental Management, vol. 276. Academic Press, Dec. 15, 2020. doi: 10.1016/j.jenvman.2020.111240.
R. E. López Barreto, M. L. Becerra Jiménez, and L. M. Borrás Sandoval, “Caracterización físico-química y microbiológica del lactosuero del queso Paipa,” Revista ciencia y agricultura, vol. 15, no. 2, pp. 99–106, 2018.
P. Tsermoula, B. Khakimov, J. H. Nielsen, and S. B. Engelsen, “WHEY - The waste-stream that became more valuable than the food product,” Trends in Food Science and Technology, vol. 118. Elsevier Ltd, pp. 230–241, Dec. 01, 2021. doi: 10.1016/j.tifs.2021.08.025.
A. M. Joyce, A. Brodkorb, A. L. Kelly, and J. A. O’Mahony, “Separation of the effects of denaturation and aggregation on whey-casein protein interactions during the manufacture of a model infant formula,” Dairy Science Technology, vol. 96, no. 6, pp. 787–806, Feb. 2017, doi: 10.1007/s13594-016-0303-4.
J. Anibal and R. Alpala, “polimorfismo de los genes k-caseina, β-lactoglobulina y α-lactoalbumina en ra-zas bovinas criollas colombianas,” 2009.
E. G. Varlamova and O. G. Zaripov, “Beta–lactoglobulin–nutrition allergen and nanotransporter of differ-ent nature ligands therapy with therapeutic action,” Research in Veterinary Science, vol. 133. Elsevier B.V., pp. 17–25, Dec. 01, 2020. doi: 10.1016/j.rvsc.2020.08.014.
A. R. Madureira, C. I. Pereira, A. M. P. Gomes, M. E. Pintado, and F. Xavier Malcata, “Bovine whey pro-teins - Overview on their main biological properties,” Food Research International, vol. 40, no. 10. pp. 1197–1211, Dec. 2007. doi: 10.1016/j.foodres.2007.07.005.
S. le Maux, S. Bouhallab, L. Giblin, A. Brodkorb, and T. Croguennec, “Bovine β-lactoglobulin/fatty acid complexes: Binding, structural, and biological properties,” Dairy Science and Technology, vol. 94, no. 5. Springer-Verlag France, pp. 409–426, 2014. doi: 10.1007/s13594-014-0160-y.
K. Kazimierska and U. Kalinowska-Lis, “Milk proteins-their biological activities and use in cosmetics and dermatology,” Molecules, vol. 26, no. 11. MDPI AG, Jun. 01, 2021. doi: 10.3390/molecules26113253.
A. Rodzik, V. Railean, P. Pomastowski, P. Žuvela and B. Buszewski, “Study on silver ions binding to β-lactoglobulin,” Biophys Chem, vol. 291, Dec. 2022, doi: 10.1016/j.bpc.2022.106897.
O. Jones, E. A. Decker, and D. J. McClements, “Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles,” Food Hydrocoll, vol. 24, no. 2–3, pp. 239–248, Mar. 2010, doi: 10.1016/j.foodhyd.2009.10.001.
O. G. Jones, E. A. Decker, and D. J. McClements, “Formation of biopolymer particles by thermal treatment of β-lactoglobulin-pectin complexes,” Food Hydrocoll, vol. 23, no. 5, pp. 1312–1321, Jul. 2009, doi: 10.1016/j.foodhyd.2008.11.013.
F. Ostertag, C. M. Schmidt, S. Berensmeier, and J. Hinrichs, “Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins,” Food Chem, vol. 342, Apr. 2021, doi: 10.1016/j.foodchem.2020.128176.
S. Patari, P. Datta, and P. S. Mahapatra, “3D Paper-based milk adulteration detection device,” Sci Rep, vol. 12, no. 1, p. 13657, Aug. 2022, doi: 10.1038/s41598-022-17851-3.
L. Ma, Y. Yang, J. Chen, J. Wang, and D. Bu, “A rapid analytical method of major milk proteins by re-versed-phase high-performance liquid chromatography,” Animal Science Journal, vol. 88, no. 10, pp. 1623–1628, Oct. 2017, doi: 10.1111/asj.12804.
C. Rubia-Payá, G. de Miguel, M. T. Martín-Romero, J. J. Giner-Casares, and L. Camacho, “UV–Vis Re-flection–Absorption Spectroscopy at air–liquid interfaces,” Adv Colloid Interface Sci, vol. 225, pp. 134–145, Nov. 2015, doi: 10.1016/j.cis.2015.08.012.
Harris D. C., “Análisis químico cuantitativo,” Revente, 2003.
V. Cerdà, P. Phansi, and S. Ferreira, “From mono- to multicomponent methods in UV-VIS spectropho-tometric and fluorimetric quantitative analysis – A review,” TrAC Trends in Analytical Chemistry, vol. 157, p. 116772, Dec. 2022, doi: 10.1016/j.trac.2022.116772.
M. L.C. Passos and M. L. M.F.S. Saraiva, “Detection in UV-visible spectrophotometry: Detectors, de-tection systems, and detection strategies,” Measurement, vol. 135, pp. 896–904, Mar. 2019, doi: 10.1016/j.measurement.2018.12.045.
M. Dehghani Mohammad Abadi, N. Ashraf, M. Chamsaz, and F. Shemirani, “An overview of liquid phase microextraction approaches combined with UV–Vis spectrophotometry,” Talanta, vol. 99, pp. 1–12, Sep. 2012, doi: 10.1016/j.talanta.2012.05.027.
T. G. Mayerhöfer, S. Pahlow, and J. Popp, “The Bouguer‐Beer‐Lambert Law: Shining Light on the Ob-scure,” ChemPhysChem, vol. 21, no. 18, pp. 2029–2046, Sep. 2020, doi: 10.1002/cphc.202000464.
D. A. Skoog, Fj. Holler, and S. R. Crouch, “Principios de análisis instrumental,” 2008.
E. O. Rukke, E. F. Olsen, T. Devold, G. Vegarud, and T. Isaksson, “Technical note: Comparing calibra-tion methods for determination of protein in goat milk by ultraviolet spectroscopy,” J Dairy Sci, vol. 93, no. 7, pp. 2922–2925, Jul. 2010, doi: 10.3168/jds.2009-2841.
B. Miralles, B. BartolomeH, M. Ramos, and L. Amigo, “Determination of whey protein to total protein ra-tio in UHT milk using fourth derivative spectroscopy,” 2000.
Q. Lüthi-Peng and Z. Puhan, “Determination of protein and casein in milk by fourth derivative UV spec-trophotometry,” Anal Chim Acta, vol. 393, no. 1–3, pp. 227–234, Jun. 1999, doi: 10.1016/S0003-2670(98)00823-X.
M. Tonolini, P. B. Skou, and F. W. J. van den Berg, “UV spectroscopy as a quantitative monitoring tool in a dairy side-stream fractionation process,” Chemometrics and Intelligent Laboratory Systems, vol. 225, Jun. 2022, doi: 10.1016/j.chemolab.2022.104561.
R. Hnasko, A. Lin, J. A. McGarvey, and L. H. Stanker, “A rapid method to improve protein detection by indirect ELISA,” Biochem Biophys Res Commun, vol. 410, no. 4, pp. 726–731, Jul. 2011, doi: 10.1016/j.bbrc.2011.06.005.
J. M. Van Emon, “Immunoassays in Biotechnology,” in Comprehensive Biotechnology, Elsevier, 2011, pp. 659–667. doi: 10.1016/B978-0-08-088504-9.00076-3.
R. S. YALOW and S. A. BERSON, “Immunoassay of endogenous plasma insulin in man.,” J Clin Invest, vol. 39, pp. 1157–1175, 1960, doi: 10.1172/JCI104130.
E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of im-munoglobulin G,” Immunochemistry, vol. 8, no. 9, pp. 871–874, Sep. 1971, doi: 10.1016/0019-2791(71)90454-X.
E. Engvall, “The ELISA, Enzyme-Linked Immunosorbent Assay,” Clin Chem, vol. 56, no. 2, pp. 319–320, Feb. 2010, doi: 10.1373/clinchem.2009.127803.
S. Aydin, “A short history, principles, and types of ELISA, and our laboratory experience with pep-tide/protein analyses using ELISA,” Peptides (N.Y.), vol. 72, pp. 4–15, Mar. 2015, doi: 10.1016/j.peptides.2015.04.012.
L. Asensio, I. González, T. García, and R. Martín, “Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA),” Food Control, vol. 19, no. 1, pp. 1–8, Jan. 2008, doi: 10.1016/j.foodcont.2007.02.010.
C. Pelaez-Lorenzo, J. C. Diez-Masa, I. Vasallo, and M. de Frutos, “Development of an Optimized ELISA and a Sample Preparation Method for the Detection of β-Lactoglobulin Traces in Baby Foods,” J Agric Food Chem, vol. 58, no. 3, pp. 1664–1671, Feb. 2010, doi: 10.1021/jf9041485.
C. Villa, M. B. M. V. Moura, J. Costa, and I. Mafra, “β-Lactoglobulin versus casein indirect ELISA for the detection of cow’s milk allergens in raw and processed model meat products,” Food Control, vol. 135, p. 108818, May 2022, doi: 10.1016/j.foodcont.2022.108818.
J. Orcajo, M. Lavilla, and I. Martínez-de-Marañón, “Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods,” Anal Chim Acta, vol. 1052, pp. 163–169, Apr. 2019, doi: 10.1016/j.aca.2018.11.048.
M. C. Doroteo, “Principios básicos de electroforesis capilar: técnica analítica de separación de anali-tos,” 2012. [Online]. Available: www.medigraphic.org.mxwww.medigraphic.org.mx
J. M. Castagnino, “Electroforesis capilar,” 2000.
A. Van Schepdael, “Capillary electrophoresis as a simple and low-cost analytical tool for use in money-constrained situations,” TrAC Trends in Analytical Chemistry, vol. 160, p. 116992, Mar. 2023, doi: 10.1016/j.trac.2023.116992.
N. Sharma, R. Sharma, Y. S. Rajput, B. Mann, R. Singh, and K. Gandhi, “Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution,” Int Dairy J, vol. 114, p. 104920, Mar. 2021, doi: 10.1016/j.idairyj.2020.104920.
M. Palmblad, N. J. van Eck, and J. Bergquist, “Capillary electrophoresis - A bibliometric analysis,” TrAC Trends in Analytical Chemistry, vol. 159, p. 116899, Feb. 2023, doi: 10.1016/j.trac.2022.116899.
F. Trimboli, N. Costanzo, V. Lopreiato, C. Ceniti and D. Britti, “Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis,” Dairy Science Technology, vol. 102, no. 7, pp. 5962–5970, Jul. 2019, doi: 10.3168/jds.2018-16194.
S. Meyer, D. Clases, R. Gonzalez de Vega, M. P. Padula, and P. A. Doble, “Separation of intact pro-teins by capillary electrophoresis,” Analyst, vol. 147, no. 13, pp. 2988–2996, 2022, doi: 10.1039/D2AN00474G.
Z. Ghafoori, T. Tehrani, L. Pont, and F. Benavente, “Separation and characterization of bovine milk pro-teins by capillary electrophoresis‐mass spectrometry,” J Sep Sci, vol. 45, no. 18, pp. 3614–3623, Sep. 2022, doi: 10.1002/jssc.202200423.
M. Masci, C. Zoani, T. Nevigato, A. Turrini, R. Jasionowska, R. Caproni and P, Ratini, “Authenticity as-sessment of dairy products by capillary electrophoresis,” Electrophoresis, vol. 43, no. 1–2, pp. 340–354, Jan. 2022, doi: 10.1002/elps.202100154.
S. Kumar Bhardwaj, “A Review: HPLC Method Development and Validation,” 2015. [Online]. Available: http://www.urpjournals.com
D. Suarez Ospina and Y. Morales Hernández, “Principios básicos de la cromatografía líquida de alto rendimiento para la separación y análisis de mezclas basicas,” América Revista Semilleros: Formación In-vestigativa, vol. 4, 2018.
P. K. Sahu, N. R. Ramisetti, T. Cecchi, S. Swain, C. S. Patro, and J. Panda, “An overview of experi-mental designs in HPLC method development and validation,” J Pharm Biomed Anal, vol. 147, pp. 590–611, Jan. 2018, doi: 10.1016/j.jpba.2017.05.006.
U. Nirenberg, “Reversed-Phase HPLC: Analytical Procedure,” in Peptide Analysis Protocols, New Jer-sey: Humana Press, pp. 23–36. doi: 10.1385/0-89603-274-4:23.
M. W. Dong, “The essence of modern HPLC: Advantages, limitations, fundamentals and opportunities,” LCGC NORTH AMERICA, vol. 31, no. 6, pp. 472–479, 2013.
O. A. Quattrocchi, S. I. A. De Andrizzi, and R. F. Laba, Introduccion a la HPLC Aplicacion y Practica escritorio. 1992.
A. Iriarte, “historia, desarrollo y últimos avances en cromatografía.” Corporación Tecnológica de Bogo-tá. 2022
H. Buzás, R. Székelyhidi, G. Szafner, K. Szabó, J. Süle and AJ. Kovács, “Developed rapid and simple RP-HPLC method for simultaneous separation and quantification of bovine milk protein fractions and their genetic variants,” Anal Biochem, vol. 658, Dec. 2022, doi: 10.1016/j.ab.2022.114939.
G. Bobe, D. C. Beitz, A. E. Freeman, and G. L. Lindberg, “Separation and Quantification of Bovine Milk Proteins by Reversed-Phase High-Performance Liquid Chromatography,” 1998.
V. Bonfatti, L. Grigoletto, A. Cecchinato, L. Gallo, and P. Carnier, “Validation of a new reversed-phase high-performance liquid chromatography method for separation and quantification of bovine milk protein genetic variants,” J Chromatogr A, vol. 1195, no. 1–2, pp. 101–106, Jun. 2008, doi: 10.1016/j.chroma.2008.04.075.
V. Bonfatti, M. Giantin, R. Rostellato, M. Dacasto, and P. Carnier, “Separation and quantification of wa-ter buffalo milk protein fractions and genetic variants by RP-HPLC,” Food Chem, vol. 136, no. 2, pp. 364–367, Jan. 2013, doi: 10.1016/j.foodchem.2012.09.002.
A. Maurmayr, A. Cecchinato, L. Grigoletto, and G. Bittante, “Detection and Quantifi cation of α S1-, α S2-, β-, κ-casein, α-lactalbumin, β-lactoglobulin and Lactoferrin in Bovine Milk by Reverse-Phase High-Performance Liquid Chromatography,” 2013.
E. Tsakali, K. Petrotos, A. Chatzilazarou, K. Stamatopoulos, AG. D'Alessandro, P. Goulas, and JF. Van Impe, “Short communication: Determination of lactoferrin in Feta cheese whey with reversed-phase high-performance liquid chromatography,” J Dairy Sci, vol. 97, no. 8, pp. 4832–4837, 2014, doi: 10.3168/jds.2013-7526.
C. R. Bupp and M. J. Wirth, “Making Sharper Peaks for Reverse-Phase Liquid Chromatography of Pro-teins,” Annual Review of Analytical Chemistry, vol. 13, no. 1, pp. 363–380, Jun. 2020, doi: 10.1146/annurev-anchem-061318-115009.
J. Molinari, L. Florez, A. Medrano, L. Monsalve, and G. Ybarra, “Electrochemical Determination of β-Lactoglobulin Employing a Polystyrene Bead-Modified Carbon Nanotube Ink,” Biosensors (Basel), vol. 8, no. 4, p. 109, Nov. 2018, doi: 10.3390/bios8040109.
R. Svigelj, I. Zuliani, N. Dossi, and R. Toniolo, “A portable electrochemiluminescence aptasensor for β-lactoglobulin detection,” Anal Bioanal Chem, vol. 414, no. 27, pp. 7935–7941, Nov. 2022, doi: 10.1007/s00216-022-04328-5.
C. P. Kurup, N. F. Mohd-Naim, and M. U. Ahmed, “A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor,” Microchimica Acta, vol. 189, no. 4, p. 165, Apr. 2022, doi: 10.1007/s00604-022-05275-9.
M. Yuan, C. Feng, S. Wang, W. Zhang, M. Chen, H. Jiang and X. Feng, “Selection of possible signa-ture peptides for the detection of bovine lactoferrin in infant formulas by LC-MS/MS,” PLoS One, vol. 12, no. 9, p. e0184152, Sep. 2017, doi: 10.1371/journal.pone.0184152.
C. Li, X. Kang, J. Nie, A. Li, M.A. Farag, C. Liu, K.M. Rogers and Y. Yuan, “Recent advances in Chinese food authentication and origin verification using isotope ratio mass spectrometry,” Food Chem, vol. 398, p. 133896, Jan. 2023, doi: 10.1016/j.foodchem.2022.133896.
G. H. Meftahi, Z. Bahari, A. Zarei Mahmoudabadi, M. Iman, and Z. Jangravi, “Applications of western blot technique: From bench to bedside,” Biochemistry and Molecular Biology Education, vol. 49, no. 4, pp. 509–517, Jul. 2021, doi: 10.1002/bmb.21516.
H. Qi, F. Wang, and S. Tao, “Proteome microarray technology and application: higher, wider, and deeper,” Expert Rev Proteomics, vol. 16, no. 10, pp. 815–827, Oct. 2019, doi: 10.1080/14789450.2019.1662303.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Yamile Jiménez Alfonso, Claudia Pérez, Roy José Andrade Becerra
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.