Plantilla diseñada por Revista Politécnica 2019 -- Archivo solo para intercambio de información con repositorios
Para lectura, se recomienda galeradas HTML y PDF


Carlos Fernando Imbachi Gamba, Aída Luz Villa Holguín


Hierarchical zeolites were synthesized by two methodologies, following desilication procedures of commercial zeolites. Starting from USY zeolite (Zeolyst CBV720, Si/Al=15), the effect of the amount of CTAB in the desilication media and the hydrothermal treatment time on the synthesized materials were analyzed. The results showed that the surfactant amount has a higher influence on relative crystallinity (%RC) and textural properties of the materials than synthesis time. All the samples showed a lower BET surface area compared with the starting zeolite, although mesopore surface area increased from 210.33 to 467.30 m2/g in the case of Z720-75 sample. In the case of USY zeolite with Si/Al=2.6 (Zeolyst CBV500), a previous dealumination with H4EDTA and an acid washing with Na2H2EDTA steps were included. It was found that the micropore and the mesopore surface areas increased 13.96% and 11.23%, respectively, compared with the parent zeolite; furthermore, the %RC was 99% after treatment procedures.


Holm, S., Taarning, Martin, E., Egeblad, K. and Christensen, Hviid, C. Catalysis with hierarchical zeolites, Catalysis Today, 3-16, 2011.

Zhang, K. and Ostraat, M. Innovations in hierarchical zeolite synthesis, Catalysis Today, 3-15, 2016.

Sadeghbeigi, R., Fluid Catalytic Cracking Handbook, Unite States of America, Elsevier, 2012.

Bartholomew, C. H. and Farrauto, R. J., Fundamentals of industrial catalytic processes, New Jersey, John Wiley and Sons, 2006.

Kulprathipanja, S., Zeolites in industrial separation and catalysis, Germany, Wiley-VCH Verlag GmbH and Co, 2010.

Cheng, W., Kim, G., Peters, A., Zhao, X., Rajagopalan, K., Ziebarth, M. and Pereira, J., Environmental fluid catalytic cracking technology, Catalytic Reviews, 39-79, 1998.

Bartholomew, C. Mechanism of catalyst deactivation, Applied Catalysis A: General, 212, 17-60, 2001.

Cerqueira, H., Caeiro, G., Costa, L. and Ribeiro, F. Deactivation of FCC catalysts, Journal of Molecular Catalysis A: Chemical, 292, 1-13, 2008.

Cuadros, J. F., Melo, D. C., Maciel, R. and Wolf Maciel, M. R., Fluid Catalytic Cracking Environmental Impact: Factorial Design Coupled with Genetic Algorithms to Minimize Carbon Monoxide Pollution, Chemical Engineering Transactions, 26, 243-249, 2012.

Vogt, E. T. C. and Weckhuysen, B. M., Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis, Chemical Society Reviews, 44, 7342-7370, 2015.

Müller, M., Harvey, G. and Prins, R., Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR, Microporous and mesoporous materials, 34, 135-147, 2000.

Agudelo, J. L., Hensen, E., Giraldo, S. A. and Hoyos, L. J., Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite, Fuel Processing Technology, 133, 89-96, 2015.

Martínez, C., Verboekend D. and Pérez-Ramírez, J., Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking, Catalysis Science and Technology, 3, 972-981, 2013

Jong, K. P., Zecevic, J., Friedrich, H., Jongh, P. E., Bulut, M., van Donk, S., Kenmogne, R., Finiels, A., Hulea V. and Fajula, F., Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts, Angew. Chem. Int. Ed., 49, 10074-10078, 2010.

Li, K., Valla, J. and Garcia-Martinez, J., Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking, ChemCatChem, 6, 46-66, 2014.

Giudici, R., Kouwenhoven, H. W. and Prins, R., Comparison of nitric and oxalic acid in the dealumination of mordenite, Applied Catalysis A: General, 203, 101-110, 2000.

Etim, U., Xu, B., Zhang, Z., Zhong, Z., Bai, P., Qiao, K. and Yan, Z., Improved catalytic cracking performance of USY in the presence of metal contaminants by post-synthesis modification, Fuel, 178, 243-252, 2016.

Ji, D., Liu, H., Wang, X., Liu, H., Gao, X., Xu, C. and Wei, S. Mesostructured Y zeolite from NaY with low Si/Al by one-step method based on bifunctional surfactant, Materials Chemistry and Physics, 196, 284-287, 2017.

Qiao, Ke, Li, Xuejin, He, Lifeng, Liu, Xinmei, Yan, Zifeng, Xing, Wei, Qin, Lihong, Dai, Baoqin and Zhang, Zhihua, An efficient modification of ultra-stable Y zeolite using citric acid and ammonium fluosilicate, Applied Petrochemstry Research, 4, 373-378, 2014.

Pu, X., Liu, N. W. and Shi, L., Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration, Microporous and Mesoporous Materials, 201, 17-23, 2015.

Gackowski, M., Tarach, K., Kuterasinski, L., Podobinski, J., Jarczewski, S., Kustrowski, P. and Datka, J., Hierarchical zeolites Y obtained by desilication: Porosity, acidity and catalytic properties, Microporous and Mesoporous Materials, 263, 282-288, 2018.

Gackowski, M., Kuterasinski, L., Podobinski, J., Sulikowski, B. and Datka, J., IR and NMR studies of hierarchical material obtained by the treatment of zeolite Y by ammonia solution, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 440-446, 2018.

García-Martínez, J., Johnson, M., Valla, J., Li, K. and Ying, J. Y., Mesostructured zeolite Y - high hydrothermal stability and superior FCC catalytic performance, Catalysis Science and Technology, 2, 987-994, 2012.

Tao, Y., Kanoh, H. and Kaneko, K., ZSM-5 monolith of uniform mesoporous channels, Journal of the American Chemical Society, 6044-6045, 2003.

Jin, J., Peng, C., Wang, J., Liu, H., Gao, X., Liu, H. and Xu, C., Facile synthesis of mesoporous zeolite Y with improved catalytic performance for heavy oil fluid catalytic cracking, Ind. Eng. Chem. Res., 53, 3406-3411, 2014.

Cejka, J., Van Bekkum, H., Corma, A. and Schueth, F., Introduction to zeolite molecular sieves, Amsterdam, Elsevier, 2007.

Van Aelst, J., Verboekend, D., Philippaerts, A., Nuttens, N., Kurttepeli, M., Gobechiya, E., Haouas, M., Sree, S., Denayer, J., Martens, J., Kirschhock, C., Taulelle, F., Bals, S., Baron, G., Jacobs, P. and Sels, B., Catalyst Design by NH4OH Treatment of USY zeolite, Advanced Functional Materials, 25, 7130-7144, 2015.

Li, W., Zheng, J., Luo, Y. and Da, Z., Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y, Applied Surface Science, 382, 302-308, 2016.

Qin, Z., Shen, B., Yu, Z., Deng, F., Zhao, L., Zhou, S. and Yuan, D., A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking, Journal of Catalysis, 298, 102-111, 2013.

Verboekend, D., Vilé, G. and Pérez Ramírez, J., Hierarchical Y and USY zeolites designed by post-synthetic strategies, Advanced Functional Materials, 22, 916-928, 2012.

Kuperkar, K., Abezgauz, L., Prasad, K. and Bahadur, P., Formation and growth of micelles in dilute aqueous CTAB solutions in the presence of NaNO3 and NaClO3, Journal of Surfactants and Detergents, 13, 293-303, 2010.

Modaressi, A., Sifaoui, H., Grzesiak, B., Solimando, R., Domańska, U. and Rogalski, M., CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conductimetric studies, Colloids and Surfaces A: Physicochemical Engineering Aspects, 296, 104-108, 2007.

American Society for Testing and Materials, ASTM D3906-03: Standart Test Method for Determination of Relative X-ray diffraction intensities of faujasite Type Zeolite containing materials, Unite States of America, 2013.

Zheng, J., Yi, Y., Wang, W., Guo, K., Ma, J. and Li, R., Synthesis of bi-phases composite zeolites MFZ and its hierarchical effects in isopropylbenzene catalytic cracking, Microporous and Mesoporous Materials, 171, 44-52, 2013.

Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A. and Ruoff, R. S., Carbon-Based supercapacitors produced by activation of graphene, Science, 24, 1537-1541, 2011.

Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck, J. S., Schlenker, J. L., Olson, D. H. and Sheppard, E. W., Effect of surfactant/Silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chemistry of Materials, 6, 2317-2326, 1994.

Li, Cheng, Guo, Linlin, Liu, Peng, Gong, Ke, Jin, Wenlong, Li, Lei, Zhu, Xiaochun, Liu, Xianchun and Shen, Baojian, Defects in AHFS-dealuminated Y zeolite: A crucial factor for mesopores formation in the following base treatment procedure, Microporous and Mesoporous Materials, 255, 242-252, 2018.

Guzmán-Castillo, M. L., Armendáriz-Herrera, H., Pérez-Romo, P., Hernández-Beltrán, F., Ibarra, S., Valente, J. S. and Fripiat, J. J., Y zeolite depolymerization-recrystallization: Simultaneous formation of hierarchical porosity and Na dislodging, Microporous and Mesoporous Materials, 143, 375-382, 2011.

Li, W., Tu, C., Zheng, J., Luo, Y. and Da, Z., Influence of acid wash on the structural and catalytic properties of the hierarchical zeolite Y, Chemistry select, 5, 934-939, 2016.

Enlaces refback

  • No hay ningún enlace refback.

Métricas de artículo

Resumen: 110

Revista Politécnica 
ISSN: 1900-2351 
ISSN: 2256-5353 (En línea)
DOI:  10.33571/rpolitec