Simulación del flujo de calor para el re-diseño de un horno de cocción de pan
DOI:
https://doi.org/10.33571/rpolitec.v15n28a9Palabras clave:
Dinámica de fluidos computacional (CFD), uniformidad del flujo de calor, campo de flujoResumen
En la industria panificadora de nuestro país, es muy común encontrar procesos de producción que se ven afectados de forma directa e indirecta por el bajo nivel de tecnificación que existe en cuanto al diseño y construcción de los hornos. Hecho que se ve reflejado en los inconvenientes que tienen lugar durante el proceso de horneo. La cocción es un proceso que juega un papel importante en la calidad del producto, el cual es influenciado principalmente por la temperatura durante la cocción por lotes. Por lo tanto, en el presente paper se muestra la evaluación de la distribución de calor al interior del horno y se verifican los problemas que se presentan en la transferencia de calor de los panes mediante la herramienta computacional CFD (Dinámica de Fluidos computacional), para de esta manera proponer tres alternativas de rediseño del horno que redunden en mejoras de la distribución del flujo y los procesos de transferencia de calor y momentum en su interior, a fin de establecer un marco comparativo que permita seleccionar la propuesta más óptima para el proceso de cocción.
In the bread industry of our country, it is very common to find production processes that are directly and indirectly affected by the low level of technology that exists in terms of the design and construction of the ovens. This fact is reflected in the inconveniences that take place during the baking process. Baking is a process that plays an important role in the quality of the product, which is mainly influenced by the temperature during batch cooking. Therefore, this paper shows the evaluation temperature profiles and flow velocity inside the oven and verifies the problems that arise in the heat transfer of the breads by means of the computational tool CFD (Computational Fluid Dynamics), in order to propose three alternatives for redesigning the oven that result in improvements in the distribution of the flow and the processes of heat transfer and momentum inside it, in order to establish a comparative framework that allows selecting the most optimal proposal for the baking process.
Métricas de artículo
Resumen: 626 HTML: 1241 PDF: 448 XML: 100Métricas PlumX
Citas
Litovchenko Igor. The Study of the Baking Ovens by Ccomputer Simulation. Acta Universitatis Cibiniensis Series E: Food Technology. Vol. XVII, no.2. 2013. doi: 10.2478/aucft-2013-0018.
Therdthai N, Zhou W, Adamczak T. Two dimensional CFD modeling and simulation of an industrial continuous bread baking oven. J Food Eng. 2003; 60:211–217.
doi: 10.1016/S0260-8774(03)00043-8.
Therdthai N, Zhou W, Adamczak T. Three-dimensional CFD modeling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. J Food Eng. 2004; 65:599–608.
doi: 10.1016/j.jfoodeng.2004.02.026.
Zhou W, Therdthai N. Three-dimensional modeling of a continuous industrial baking process. In. Sun DW, editor. Computational fluid dynamics in food processing. Boca Raton: CRC Press; 2007. pp. 287–312. doi: 10.1201/9781420009217.ch11
Wong SY, Zhou W, Hua J. Robustness analysis of CFD model to the uncertainties in its physical properties for a bread baking process. J Food Eng. 2006;77:784–791.
doi: 10.1016/j.jfoodeng.2005.08.019.
Wong SY, Zhou W, Hua J. CFD modeling of an industrial continuous bread-baking process involving U-movement. J Food. Eng. 2007:78:888–896. doi: 10.1016/j.jfoodeng.2005.11.033.
Anishaparvin A, Chhanwal N, Indrani D, Raghavarao KSMS, Anandharamakrishnan C. An investigation of bread baking process in a pilot-scale electrical heating oven using computational fluid dynamics. J Food Sci. 2010;75:605–E611. doi: 10.1111/j.1750-3841.2010.01846.x.
Mondal A, Datta AK. Two-dimensional CFD modeling and simulation of crustless bread baking process. J Food Eng. 2010;99:166–174. doi: 10.1016/j.jfoodeng.2010.02.015.
Chhanwal N, Tank A, Raghavarao KSMS, Anandharamakrishnan C. Computational fluid dynamics (CFD) modeling for bread baking process-A review. Food Bioprocess Technol. 2012; 5:1157–1172. doi: 10.1007/s11947-012-0804-y.
Sun DW. Computational fluid dynamics in food processing. Boca Raton: CRC Press; 2007. ISBN 9781138568310
Kuriakose R, Anandharamakrishnan C. Computational fluid dynamics (CFD) applications in spray drying of food products. Trends Food Sci Technol. 2010;21:383–398.
doi: 10.1016/j.tifs.2010.04.009.
Gaurav Verma & Matt Weber. SolidWorks Simulation. 5th Edition. ISBN-13: 978-1988722276. 2018.
Vargas H. Lisandro, Rodriguez P. Alfonso, Castro M. Noel, Pedraza Y. Cristian y Peña C. Jorge. Modelo de la dinámica de fluidos para optimizar el proceso de manufactura de un horno de secado de madera. Revista Ingeniare, Universidad Libre-Barranquilla. Año 9, N° 16, pp 25-37. ISSN 1909-2458.doi.org/10.18041/1909-2458/ingeniare.16.589
Mou B., He B. J., Zhao D. X., Chau K. W. Engineering Application of Computational Fluid Mechanics, Vol 11. 293. 2017.
Liang, C. Papadakis, G. and Luo, X. Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array, Comput & Fluids; 38, pp. 950-964, 2009.
doi: 10.1615/JEnhHeatTransf.v17.i3.60
Ateeque, Md., Udayraj, Mishra, R. K., Chandramohan, V. P. y Talukdar, P. Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field. En: International Journal of Thermal Sciences, 78, pp.145-157. 2014.
doi.org/10.1016/j.ijthermalsci.2013.12.003
Paton, J., Khatir, Z., Thompson H., Kapur, N. y Toropov, V. Thermal energy management in the bread baking industry using a system modelling approach. En: Applied Thermal Engineering, 53(2), pp.340-347. 2013.
doi.org/10.1016/j.applthermaleng.2012.03.036