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RESUMEN 
Los sensores RGB-D han permitido atacar de forma novedosa muchos de los problemas clásicos en visión por 
computador, tales como la segmentación, la representación de escenas, la interacción humano-computador, 
entre otros. Con respecto a la caracterización de movimiento, las estrategias típicas en RGB-D están limitadas 
al análisis dinámico de formas globales y a la captura de flujos de escena. Estas estrategias, sin embargo, solo 
recuperan información dinámica entre cuadros consecutivos, limitando  el análisis de largos desplazamientos.  
Este trabajo presenta una estrategia para el cálculo de trayectorias (3D+t), las cuales son fundamentales para 
la descripción cinemática local, permitiendo una descripción densa de movimiento. Cada trayectoria permite 
modelar palabras cinemáticas, las cuales en conjunto, describen gestos complejos en los videos. Estas 
palabras cinemáticas fueron procesadas dentro de un esquema de bolsa-de-palabras para obtener un 
descriptor basado ocurrencias. Este descriptor de trayectorias logró una exactitud del 80% en 5 gestos y 100 
videos. 
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3D+T DENSE MOTION TRAJECTORIES AS KINEMATICS PRIMITIVES TO RECOGNIZE GESTURES ON 

DEPTH VIDEO SEQUENCES 
 

ABSTRACT 
RGB-D sensors have allowed attacking many classical problems in computer vision such as segmentation, 
scene representations and human interaction, among many others. Regarding motion characterization, 
typical RGB-D strategies are limited to namely analyze global shape changes and capture scene flow fields to 
describe local motions in depth sequences. Nevertheless, such strategies only recover motion information 
among a couple of frames, limiting the analysis of coherent large displacements along time. This work 
presents a novel strategy to compute 3D+t dense and long motion trajectories as fundamental kinematic 
primitives to represent video sequences. Each motion trajectory models kinematic words primitives that 
together can describe complex gestures developed along videos. Such kinematic words were processed into 
a bag-of-kinematic-words framework to obtain an occurrence video descriptor. The novel video descriptor 
based on 3D+t motion trajectories achieved an average accuracy of 80% in a dataset of 5 gestures and 100 
videos.   
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1. INTRODUCTION 
 
Typically, computer vision applications are merely 
based on optical RGB representations, with 
dependency on appearance information, which 
implies several limitations, such as: segmentation of 
similar color objects, detection in dynamic 
scenarios, sensibility to illumination changes, or 
even strong variability recognition for different 
perspectives. The current RGB-D (Kinect) devices 
have allowed to introduce new information to better 
represent objects of interest from depth scenes. 
This new multimodal analysis has allowed 
addressing new perspectives for classical vision 
problems, such as: 3D reconstruction, human 
tracking, human interaction, among many others. 
Also this kind of analysis helps with typical 
problems of illumination changes and perspective. 
The computation of RGB-D primitives results useful 
to understand complex scenarios by capturing and 
characterizing more accurately the different objects 
of interest in a particular problem. Nevertheless, the 
depth sensors are limited in resolution and some 
little environment perturbations lead to noisy 
measurements. Additionally, the use of depth 
information is complex because of the nonlinear 
correlation between depth and optical information, 
for instance scale differences and strong 
dependency on intrinsic video device parameters. 
Even worst, the computation of motion primitives 
implies the association of temporal RGB frames 
along the sequences, which increase the complexity 
of computational approaches.  
In the state-of-the-art has been proposed several 
strategies to recover low level features and to 
develop image descriptors from RGB-D information. 
For instance, Blum et. al. [1] introduces a RGB-D 
clustering algorithm that recovers regional patterns 
from SIFT points. Such approach is however 
dependent of features in cluster, and the SIFT 
points discard depth information. In [2] it was 
analyzed the representation of scenes by 
computing interest points in appearance and depth 
information, independently. Interestingly, in that 
work it is reported that a better characterization for 
recognition is achieved only using appearance 
features. Such evaluation can be justified because 
richness in RBG space while depth information has 
coarse levels of representation. Nevertheless, in the 
reported work authors suggest the use of 
appearance points but complemented with depth 
information in a low level scale by using average 
measures around points. In this sense, SIFT and 
HOG descriptors were extended in RGB-D 

sequences, achieving an improvement of 10% in a 
classical object recognition task [3].  
Regarding motion analysis, seminal works have 
analyzed temporal changes of silhouettes estimated 
from depth channels [4]. These approaches remove 
dependencies of appearance and result efficient in 
time computation. However, a main problem in such 
global representation is the dependency of 
perspective and the restrictions w.r.t occlusion. 
Also, a typical motion characterization is carried out 
from the computation of the appearance’s velocity 
field between consecutive frames to recover the 
displacement of an object of interest characterized 
from its appearance. From a RGB-D perspective, 
several strategies has been proposed to recover 
scene fields among consecutive frames, achieving 
a 3D local displacement characterization [5,6,7]. 
Such scene flows give important kinematics 
primitives but they are however, prone to errors 
because of the low resolution depth maps that limit 
the correlation with optical information along the 
sequence [8]. In [9] was proposed a scene flow 
approach that firstly computes a classical dense 
optical flow and then add depth information to 
recover 3D velocity information. This approach is 
nevertheless limited to include only brightness 
restriction which interferes with the field 
correspondence in depth. In [10] was proposed a 
simultaneous localization and mapping (SLAM) 
strategy that generates a 3D point cloud at each 
time. Hence, an environment measurement model 
(EMM) computes a set of rigid transformation 
between consecutive clouds to obtain a graph of 
correspondence to estimate a scene flow. This 
approach was extended to compute trajectories to 
track robots in controlled environments. However, 
the graph representation is computationally 
complex and the cloud correspondence can fail 
when abrupt motions are present. Herbest et. al. [7] 
also proposed a scene flow strategy but using non-
linear operators to model color and depth. This 
approach is able to recover dense flows even in 
uniform scenarios. A main drawback of scene flow 
characterization is the description only between 
consecutive pairs of frames, limiting the kinematics 
description of objects to first order primitives.  
This work introduces a novel strategy that computes 
3D+t long trajectories as local kinematics primitives 
of RGB-D sequences. These long trajectories allow 
recovering coherent local motion information along 
the sequences that can be used to analyze object in 
the scene.  Firstly, a scene flow is computed along 
the video to obtain sequential velocity fields. Hence, 
a local point tracking is defined over a grid of pixels 
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to follow the corresponding velocity vectors. Several 
trajectories are removed because of abrupt motions 
among consecutive frames or given the static 
performance. Each of the recovered trajectories 
was characterized from local kinematics metrics, 
such as average and variation of velocities, 
curvature and torsion. This kinematics is a word to 
represent a set of object motions recorded in 
videos. The motion words are coded into a bag of 
words scheme to validate the performance of 
obtained trajectories. Validation of proposed 
trajectories was carried out into a scheme of 
recognition of gestures recorded in RGB-D 
sequences. 
 
 
2. MATERIALS AND METHODS 
 
In this work is presented a computational strategy to 
recover 3D+t trajectories able to locally characterize 
RGB-D sequences. The proposed approach starts 
by recovering 3D velocity fields between 
consecutive frames as an initial scene flow 
characterization (subsection 2.1). These velocity 
fields help to track uniform points along the 
sequence that constitutes long term trajectories 
(subsection 2.2). A set of differential kinematics are 
computed along each trajectory to obtain a video 
representation (subsection 2.3). Finally, a bag-of-
kinematics words is built to obtain a final descriptor 
of the proposed trajectories in the problem of 
gesture representation (subsection 2.4). Next 
subsections describe each of the steps considered 
in the proposed strategy. 
 
2.1 RGB-D scene flow characterization 
 
The computation of motion fields, between 
consecutive frames, from optical flow strategies is 
one of the most relevant primitives in computer 
vision to represent objects of interest. These 
strategies are relatively independent to appearance, 
robust to some changes of interest and can recover 
additional features to complement a recognition 
analysis. Classical optical flows approaches include 
the Lucas and Kanade [11] that solve a linear 
problem to find edge motion vectors in the scene. 
On the other hand, Horn and Schunck [12] 
introduces global restriction and variational 
approaches to recover dense motion field’s 
estimations. These two main works have given rise 
to novel applications and new strategies based on 
motion quantification [9], [13], and [7]. 

Taking advantage of RGB-D sequences, scene flow 
characterization strategies allow recovering 3D local 
velocities as a set of three-dimensional 
displacement vectors in consecutive frames. In this 
work it was implemented a variational strategy that 
includes local and global restrictions to preserve 
motion discontinuities and to recover scene flow 
estimations following the model proposed by 
Quiroga et.al. in [9]. This 3D flow strategy models 
rotational and translational motions by using local 
and global restrictions of 3d scene points. Such 
restriction allows a better estimation of 3D rotation 
and non-rigid motions. 
 
In general a 3D motion could be measured as the 
difference between two consecutive cloud points, 
represented in real world coordinates as: 

(𝑋, 𝑌, 𝑍)𝑡𝑖
− (𝑋, 𝑌, 𝑍)𝑡𝑖+1

. This motion can be 

approximated as a scene flow v̂ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) taking 

into account the 𝑥 = (𝑥, 𝑦)𝑇 projection over the 

brightness images, together with corresponding 

depth values 𝑧(𝑥). Then a first motion consistency 

is defined from both: brightness 𝛷𝑏 and depth 

consistency 𝛷𝑑, measured over a local region 

𝑊(𝑥; 𝑣).  For doing so, the brightness consistency 

is measured among consecutive frames as: 

𝛷𝑏(𝑣𝑥, 𝑣𝑦) ∶= ‖𝐼𝑡𝑖+1
(𝑊(𝑥; 𝑣)) − 𝐼𝑡𝑖

(𝑊(𝑥; 𝑣))‖, 

while the depth consistency is expressed as: 

𝛷𝑑(𝑣𝑧) ∶= ‖𝑍𝑡𝑖+1
(𝑊(𝑥; 𝑣)) − 𝑍𝑡𝑖

(𝑊(𝑥; 𝑣))‖. 

Hence a general 3D flow motion consistency is 
defined in whole space x as: 
 

𝐸𝐷(v) = ∑ 𝛹𝛷𝑏(𝑣𝑥, 𝑣𝑦) + 𝜆𝛹𝛷𝑑(𝑣𝑧)

𝑥

 (1) 

 

where 𝛹(𝑠2) = √𝑠2 + 𝜀  is a Charbonnier penalty 

and 𝜆 is a predefined weight for both considered 

consistencies. Additionally, a second restriction was 
considered to capture large coherent 3D 
displacements. This displacement allows recovering 
coherent abrupt motion that represents the 
kinematics signature of some objects. In such 

cases, a set of sparse SIFT points 𝑚(𝑥𝑡𝑖
) are 

computed from optical images, from which are 
measured a 3D motion consistency w.r.t to couple 

points in the next frame 𝛿3𝐷(𝑥𝑡𝑖
, 𝑥𝑡𝑖+1

). The 

minimization matching term is then defined, as: 
 

𝐸𝑀(v) = ∑ 𝑝(𝑥)

𝑥

𝛹(‖𝛿3𝐷(𝑥𝑡𝑖
, 𝑥𝑡𝑖+1

) − v(x𝑡𝑖
)‖) (2) 
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with 𝑝(𝑥) = 1 in regions around of an SIFT interest 

point.  A third restriction 𝐸𝑅(v) is defined over the 

captured field and acts as local regularization term 
to favor locally rigid motions and preserve motion 
discontinuities in depth. This restriction is minimized 
w.r.t the gradients of computed field in each of their 

axis, and weighted by a function 𝜔(𝑥) = 𝑒−𝛼|𝛻𝑍(𝑥)| 

that helps to regularize the field w.r.t the computed 
depth map. This flow rule minimization is expressed 
as: 

𝐸𝑅(v) = ∑ 𝜔(𝑥)|𝛻𝑣𝑡𝑖
(x)|

𝑥

 (3) 

 
This approach uses a regularized variational 
function to obtain a total dense scene field, while 
preserving motion discontinuities. The scene flow is 
finally obtained as the sum of three restriction 
defined above. In Fig. 1 is illustrated a typical 
computation of scene flow for a couple of frames.  It 

is shown a gray-map representation of the 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 

components separately. 
Despite of 3D motions have demonstrated to be 
useful to describe dynamic scenes, these primitives 
are limited to measuring only each consecutive pair 
of frames. From RGB-D information, the 
implemented strategy achieves a dense 3D field 
representation of the scene. 
 

Fig. 1. Scene flow. The 3D motion between a pair of 
consecutive RGB-D images is obtained from the 
scene flow information. Please visit the site: (to be 
announced) to observe the image in color. 
Source: The authors. 
 
2.2 Computing long motion trajectories 
 
Taking advantage of dense optical flow description, 
in the literature has been proposed new kinematics 
models that search to extend motion information in 
more than two frames. It consists of local motion 
trajectories that represent local primitives that follow 
interest points along the sequences, describing 
kinematics information in relatively large intervals of 
time [14,15].  For instance the KLT-Tracker uses an 
extension of pyramidal Lukas-Kanade [16] to follow 
relevant motion vectors, obtaining coherent motion 

trajectories of coherent edges along the sequence. 
Such representation is nevertheless dispersed and 
only produces few trajectories to represent the 
motion of an object. Also, Sun et. al. [14], proposed 
the capture of salient interest SIFT points by 
carrying out a coherent matching along the 
sequence. This approach extends the performance 
of SIFT points, being invariant to scale and rotation 
but only representing few points along the scene 
which can limit a statistical representation of the 
objects. On the other hand, Wang et. al. proposed a 
dense trajectories representation by following 
independent fields of motion along the videos. Such 
representation has been proofed to be useful in 
action representation tasks for classical RGB 
sequences. 
Inspired in such dense trajectories, in this work is 
proposed an extension of dense trajectories 
computed in RGB-D spaces, which allows capturing 

(3𝐷 + 𝑡) long trajectories. These proposed 

trajectories can enrich the kinematics description of 
the object by computing higher-order motion 
representations. Also, the trajectories can be used 
as bases to recover local RGB-D descriptors. For 
doing so, the proposed strategy starts by computing 
a point cloud from the RGB-D sequences at each 
time. This cloud point assumes a pre-processing 
and calibration of RGB and depth images. Then, a 
dense sampling is carried out from the cloud point 

𝑃𝑡(𝑥) = (𝑥𝑡 , 𝑦𝑡,𝑧𝑡) taking a grid of spatially 

distributed points along of each frame. 
Thereafter, the scene flow, herein implemented, is 
computed among a couple of frames to obtain a 
basic 3D velocity representation of the sequence for 
the cloud of RGB-D points. In such way, each of the 

points 𝑃𝑡(𝑥) = (𝑥𝑡 , 𝑦𝑡,𝑧𝑡) gotten from the dense 

grid is tracked to the following frame from the 

respective vector of displacement v̂ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧), 

computed in the scene flow characterization. As in 
RGB strategies along consecutive frames, the 

displacement vector v̂ can represent incoherent 

abrupt motions. The displacement of the point is 
filtered by using a classical median operator, over a 

neighborhood 𝛺, as, 𝑃𝑡+𝑖(𝑥) = 𝑃𝑡(𝑥) +

𝑚𝑒𝑑{𝑣(𝑥𝑡𝑖
)}

𝛺
, preserving the structure of points 

along the sequence. The set of points that are 
tracked according to the associated velocity vector 

form the (3𝐷 + 𝑡) motion trajectory 

(𝑃𝑡(𝑥), 𝑃𝑡+1(𝑥), 𝑃𝑡+2(𝑥), … , 𝑃𝑡+𝑛(𝑥)). A typical 

trajectory representation is illustrated in Fig. 2, 

where the displacement of point (𝑥, 𝑦) is drawn in 
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blue, and for the z-component, each trajectory is 
drawn using a color-map, where green represents 
trajectories that are close to the camera, while blue 
represent low motion in z. This 3D tracking 
introduces important features about geometry of the 
object as well as the 3D motion displacement 
developed during a particular action. 
 

 
Fig. 2. (3D+t) motion trajectories. In left subplot is 
illustrated the RGB-D information of captured hand. 
Then, between consecutive frames is computed a 
scene flow (middle subplot) that recovers the 
velocity of hand and hence its main geometrical 
structure. From such scene flow is tracked 3D 
points along video to obtain (3D+t) long trajectories 
as illustrated in right subplot. In this plot, color of 
trajectories represent the depth displacement, being 
green a color that represent that trajectories are 
close to the camera, while red color indicates that 
the trajectories are far.  Please visit the site: (to be 
announced)  to observe the image in color. 
Source: The authors. 
 
Some spatial filters are implemented to remove 
trajectories that have strong motions among 
consecutive frames or trajectories with static 
performance. These spatial filters are implemented 
by using the temporal thresholding of the 
trajectory’s variance. An illustration of the process 
to compute 3D motion trajectories is presented in 
Fig. 2, where left plot represent raw cloud point 
information, and, how scene flow is computed 
among consecutive frames (middle plot). 3D+t long 
trajectories (right panel) are then obtained by 
tracking several points from scene flow. 
 
2.3 Kinematics trajectory features 
 

The set of (3𝐷 + 𝑡) long trajectories captured along 

the video could be used as kinematic independent 
words to represent the gestures in a video. These 
trajectories are rich in dynamic spatio-temporal 
information and result fundamental to characterize 
motion. Then, a set of kinematic differential 
measures were computed from each trajectory to 

represent the words that represent a specific 

activity. In this work, it was computed the average 𝜇 

and standard deviation 𝜎 of the local speed along 

each trajectory, as: {𝜇(‖v(x)‖), 𝜎(‖‖v(x)‖‖)}. 

Since trajectories track motion points along the 
sequence and represent long local information, 
additional kinematics and analysis can be carried 
out. For instance, a complementary measure in this 
work was the curvature, that allows describing how 
rapidly the trajectory is bending along the video.  
Also the torsion was considered in this work as an 
additional 3D measure of motion trajectory. The 
computation of such metrics were implemented 
according to [27], following finite Euclidean 
differences. For instance the curvature is 
approximated by the circle that is circumscribed 
around three consecutive points of the trajectory 

𝑃𝑖−1(𝑥), 𝑃𝑖(𝑥), 𝑃𝑖+1(𝑥). Then, the curvature 𝜅 can 

then be expressed as: 
 

𝜅(𝑃𝑖(𝑥)) = 4
√𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

𝑎𝑏𝑐
 (4) 

 

where 𝑠 = (𝑎 + 𝑏 + 𝑐) 2⁄  and 𝑎 = ‖𝑃𝑖−1 − 𝑃𝑖‖, 

𝑏 = ‖𝑃𝑖 − 𝑃𝑖+1‖ and 𝑐 = ‖𝑃𝑖−1 − 𝑃𝑖+1‖ are three 

consecutive segments of the trajectory.  Also, the 

torsion 𝜏 could be approximated using six 

consecutive segments of the trajectory, as: 

𝜏(𝑃𝑖(𝑥)) = 6
𝐻

(𝜅(𝑃𝑖(𝑥)))
 (5) 

with 𝐻 as the  height of the tetrahedron formed from 

each of the six consecutive segments of the 
trajectory. An important feature of the proposed 

(3𝐷 + 𝑡) trajectories is the posibility to expand 

kinematics features that involve depth information, 
as the torsion. 

2.4 Mid-level trajectory representation for 
recognition 

The set of computed motion trajectories constitutes 
a set of kinematics primitives to represent the 
particular performance of objects of interest. Each 
of the trajectories was codified with a set of 
kinematic measures as words of representation into 
Bag-of-kinematic words (BoKW). This mid-level 
representation is widely used in different areas of 
interest   such   as   natural   language   processing,  
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Fig. 3.  Recognition from proposed (3D+t) trajectories. (a) RGB-D acquisitions.  (b) The dense scene flow is 
obtained and the (3D+t)trajectories are calculated. (c) From long (3D+t)trajectories, a set of kinematics 
primitives are computed to code motion information that can be associated with gestures. In this work was 
computed mean and standard deviation velocities, as well as the curvature and torsion of each trajectory (d) 
This local kinematic primitives are coded as motion words into a scheme of bag-of-kinematics-words and then 
occurrence histograms are computed. Such histograms are mapped to SVM to predict the gesture. Please 
visit the site: (to be announced)  to observe the image in color. Source: The authors. 

computer vision for detection and recognition of 
objects in images and videos, among others. 

Particularly in this work, a set of kinematic words, 
computed from a set of training videos, were used 
as input in a non-supervised k-means algorithm to 
recover k representative kinematics words that 
represent in general whole actions in video. Then, 

on testing step, a new video is coded with (3𝐷 + 𝑡) 

long trajectories and then a set of kinematic words 
are computed for the whole video. Thereafter, each 
kinematic word is projected to the trained dictionary 
to compute the most similar centroid. From such 
comparison is built an occurrence histogram that 
represents the descriptor of each video. 

Finally, the occurrence histograms are computed for 
all the dataset, i.e., training and testing videos. The 
set of training histograms are used to compute a 
machine learning model that allows a posterior 
classification.  In this work it was implemented a 
support vector machine strategy (SVM) because its 
well-known performance in different areas of 
recognition and the efficiency to obtain results [28, 
29]. Then, for testing it was mapped the histogram 
occurrences to the previously trained SVM model 
and it was obtained automatically a label of the 
gesture in video. Fig. 3 shows the general scheme 
used to recognize particular RGB-D gestures from 

the proposed (3𝐷 + 𝑡) motion trajectories. 

2.5 Data 

In literature it has been reported RGB-D datasets 
for different purposes [30, 31, 32]. Nevertheless, 
such datasets are namely captured for static 
recognition tasks and only independent images are 
captured to describe the object observations. Also, 
some proposed datasets are captured to describe 
postural gestures but with strong limitations along 
time. In such cases, few disperse frames are taken 
from videos to represent main poses of a particular 
action. Also some datasets are restricted to two 
continuous frames to test scene flow algorithms. 

A novel motion RGB-D dataset is herein reported 
that result useful to evaluate strategies that 
compute kinematic information along sequences. 
From this dataset is possible to capture smooth 
trajectories along time and also to compute scene 
flows, allowing to measure the coherence along the 
video sequence. The proposed dataset was 
captured from one kinect V1 camera and the raw 
sequence of frames was recovered with the open 
frameworks OpenNI (https://structure.io/openni) and 
libfreenect 
(https://github.com/OpenKinect/libfreenect). Each 
video sequence was captured in a spatial resolution 
of 640x480 with a temporal resolution of 30 fps in  
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Fig. 4. Dataset to evaluate the proposed approach. This dataset is available at: (to be announced) repository 
(to be announced).  In the first row it is shown the first frame of each one of the actions in the intensity 
channel, and their corresponding depth maps in the second row. A total of five different gestures were 
computed into a semi-controlled scenario. The 3D motions as representative keys of the recorded gestures.  
Please visit the site: (to be announced)  to observe the image in color. Source: The authors.   

both channels RGB and depth. The proposed 
dataset was captured in a controlled scenario, with 
uniform background and relative small camera 
jitters. A total of five persons were recorded where 
each one develops five different actions with one or 
both hands. The selected actions involve several 
gestures with different motion representative 
signatures and with displacements in the depth 
axis. Each selected gesture was recorded five times 
to obtain a range of statistical variation of each 
motion. A total of 125 videos were recorded. In Fig. 
4 is illustrated the different gestures captured in the 
proposed dataset. The dataset is available at: (to be 
announced) repository (to be announced). 

 

3. RESULTS 
 
The proposed strategy computed a set of (3𝐷 + 𝑡) 
long trajectories as kinematics primitives to 
represent gestures captured in RGB-D scenarios. A 
first qualitative evaluation of the computed 
trajectories is illustrated in Fig. 5, in which the 
trajectories are computed for a particular gesture 
with two hands. For this gesture, a hand rotation in 
a vertical axis is carried out. As observed in the 
figure, the most important information is coherent 
with hand motion. The color of each trajectory is 
represented in a color map, where gray scale color 
represents motion in depth that is closer to the 
acquisition camera. 

Secondly, a quantitative evaluation was performed 
by measuring the capability of representation of 

(3D+t) motion trajectories. For doing so, each 
trajectory captured in the sequence was 
characterized by using a set of kinematics, namely: 
velocity means, velocity deviations, curvatures and 
torsion. Then, a bag of kinematic words was 
codified to represent each of the gestures described 
in the evaluated dataset. A k-fold cross validation 
was performed to obtain a statistical significance of 
the results, by fixing k = 25.  For the whole 
considered experiments each of the computed 
trajectories was characterized with a total of 8 
scalar kinematics. Also the BoKW was trained with 
a dictionary of a total of 250 centroids. Hence, the 
final gesture descriptor recover very compact 
histograms 250 occurrence bins w.r.t the learned 
kinematic dictionary.  

In a first experiment it was evaluated the capability 
of representation of the proposed strategy for the 
three most different gestures, namely: “RING”, 
“TRIANGLE” and “FLEXION”. In Table 1 is reported 
the obtained results for each of the subject included 
in the experiments. In general, the proposed 
approach achieves an average accuracy of 76% for 
a total of 100 videos. In subject 2 there exist some 
limitations because some noise in the sequence 
limit the computation of an appropriate scene flow 
and then some few trajectories are recovered to 
represent the gestures. 
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Fig. 5. 3D trajectories obtained for the gesture 
“ring”.  Color represents the displacement in depth 
coded in the color-map shown in the color-bar. 
Please visit the site:  to observe the image in color 
and appreciate the difference in depth with respect 
to the camera, achieved by the proposed approach. 
Please visit the site: (to be announced) to observe 
the image in color. Source: The authors. 

Table 1. Gesture classification of 4 subjects, 3 
classes and 8 bins in the final descriptor.  Mean 
accuracy: 76%. 

Subjects Accuracy (%) 

P1 80 

P2 64 

P3 88 

P4 72 

Source: The authors. 

 

In the same direction, in a second experiment it was 
included an additional gesture into the framework of 
evaluation, the gesture “ROTATION”. In Table 2 are 
reported the results obtained for this experiment. 
Interestingly, the proposed approach achieves 
better rates of recognition with an additional 
gesture, obtaining and average score of 80% for a 
total of videos of 100. This result also show the 
stable performance of the proposed approach to 
analyze and characterize different gestures 
captured in RGB-D sequences. 

In a third experiment, as reported in Table 3, was 
evaluated the entire dataset by including all of the 
gestures. In such case, the average accuracy of the 
proposed approach is 77% which is favorable in 
terms of the capability of the approach to represent 
gestures. It can be observed that the subject P3 has 
a lower score because the actor develops the action 

at a different velocity w.r.t to the others, which 
combined with some artifacts in scene, results in 
few trajectories of representation. 

Table 2. Gesture classification of 4 subjects, 4 
classes and 8 bins in the final descriptor.  Mean 
accuracy: 80%. 

Subjects Accuracy (%) 

P1 92 

P2 72 

P3 68 

P4 88 

Source: The authors. 

 

Table 3. Gesture classification of 4 subjects, 5 
classes and 8 bins in the final descriptor.  Mean 
accuracy: 77%. 

Subjects Accuracy (%) 

P1 92 

P2 72 

P3 68 

P4 88 

Source: The authors. 

In Table 4 is reported an additional experiment with 
all gestures but using a different combination of 

subjects, where all the possible combinations (
4
3

)of 

3 persons were used to carried out the analysis.  
From this experiment it can be confirmed that 
subject P3 reports some variations w.r.t to the rest 
of the population, which impact in lower results.  
The proposed approach is however robust to 
capture this variations and try to predict correctly 
the developed gesture.   
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Table 4. Gesture classification of 3 subjects, 5 
classes and 8 bins in the final descriptor.  Mean 
accuracy: 75.33%. 

Subjects Accuracy (%) 

P1, P2, P3 73.33 

P1,P2, P4 84 

P1,P3, P4 76 

P2,P3, P4 68 

Source: The authors. 

Finally, a confusion matrix was computed using a 
total set of 5 gestures (Fig. 7). As it can be 
observed, almost all the gestures have a rate 
recognition above of 80%. Particularly, the gesture 
rotation reports some misclassifications because 
the kinematics similarities with the gestures 3 and 5. 
In general, the (3𝐷 + 𝑡) motion trajectory 
demonstrates to be robust to represent kinematics 
gestures. 

 

 

Fig. 7. Confusion matrix for the best results 
obtained in the experiment. In each row/column is 
represented the correlation of each gesture G with 
the other.  

 
 

4. DISCUSSION 
 

This work introduced a novel approach to recognize 
3D gestures, captured from a kinetic sensor, and 
using long 3D+t motion trajectories. The complete 
video sequence is characterized by a set of long 
motion trajectories with the main advantage of 
describing motion in space as well as in depth. 
Then, each of the trajectories was characterized 
using kinematic primitives, like speed, velocity 
angle, curvature and torsion. Such primitives allow 
to build a mid-level representation and then a 3D 
gesture descriptor is coded as occurrence 
histograms projected over such representation. 
These descriptors are mapped to a support vector 
machine strategy to obtain predictions.  

In literature has been proposed some approaches 
that are based on detection of interest points from 
appearance information [1,2]. These approaches 
are however dependent on image properties, and 
require a proper definition of the object of interest. 
In contrast, the proposed approach holds a relative 
independence of appearance, and gesture 
description is only based on motion information. 
Over a dataset with more than 100 video 
sequences the proposed approach achieves 
accuracy scores in average of 80%. These gestures 
were performed by different actors, which result 
fundamental to evaluate color dependency of 
descriptor.   

Other approaches, like proposed in [4] used 
temporal information to code gesture descriptors in 
RGB-D scenarios.  Such approaches are sensible 
to occlusions and the well definition of shape. In 
such sense the mid-level representation of our 
approach allows to recover and characterize 
incomplete gestures.  Recently, other approaches 
have tried the motion characterization of RGB-D 
sequences by computing scene flow methodologies 
[5,6,7].  These approaches result very important to 
build kinematic representations in 3D+t scenes. 
However, a main limitation of such approaches is 
that the description of motion fields is applied only 
among consecutive frames, limiting the kinematic 
history description. The herein proposed approach 
takes advantage of such 3D motion field and 
selects a set of points, which are followed during 
time.  The resulting long trajectories allow a better 
characterization of kinematics, with the possibility of 
incorporating higher representations such as the 
curvature and torsion.  
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In general the kinematic achieves more than 90% 
for some specific gestures, because their well-
defined motion signature. Other gestures are 
however composed of several common motions, 
and the description result difficult when using only 
kinematic information.  

 

5. CONCLUSIONS  
 
This work presented a novel strategy to compute 
long motion primitives in RGB-D space. The 
primitives are represented as (3D+t) trajectories that 
are a set of points tracked along the sequence, 
according to specific scene flow information. These 
motion trajectories were characterized with 
differential kinematics and included in a bag-of-
words representation. A new dataset was also 
herein computed to evaluate motion information 
from particular objects of interest in RGB-D 
sequences. In the task of classification, the motion 
trajectories proved to be robust to represent 
different RGB-D gestures, from very compact 
descriptors. 

For a set of five different gestures, developed by 4 
different actors, the proposed strategy achieved an 
80% of average accuracy, by only using histograms 
of 8 bins. Future work includes the development of 
trajectories that only follow interest points in depth 
and the evaluation on more rich datasets and 
scenarios. 
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