Influencia de las condiciones de desilicación en la síntesis de la zeolita jerárquica Y

Aída Luz Villa Holguín, Carlos Fernando Imbachí Gamba

Resumen


Se sintetizaron zeolitas jerárquicas por dos metodologías, siguiendo procedimientos de desilicación de zeolitas comerciales. Partiendo de la zeolita USY (Zeolyst CBV720 con Si/Al = 15), el efecto de la cantidad de CTAB en el medio de desilicación y el tiempo del tratamiento hidrotérmico fueron analizados. Los resultados mostraron que la influencia de la cantidad de surfactante en la cristalinidad relativa (%RC) y las propiedades texturales de los materiales fue mayor que el efecto del tiempo. Todas las muestras mostraron una menor área superficial BET comparada con el material de partida, pero el área superficial mesoporosa tuvo un incremento de 210.33 a 467.30 m2 /g en el caso de la muestra Z720-75. Para la desilicación de la zeolita USY con Si/Al = 2.6 (Zeolyst CBV500), se incluyó una etapa previa de desaluminación con H4EDTA y un lavado ácido posterior con Na2H2EDTA. Se encontró que el área superficial microporosa y el área superficial mesoporosa aumentaron 13.96% y 11.23%, respectivamente, comparado con el material comercial; además, el %RC se conservó en un 99% después de los tratamientos.

Palabras clave


Desilication; CTAB; NH4OH; Hydrothermal treatment; Hierarchical zeolite

Referencias


Holm, S., Taarning, Martin, E., Egeblad, K. and Christensen, C. Hviid, Catalysis with hierarchical zeolites, Catalysis Today, 3-16, 2011.

Zhang, K. and Ostraat, M. Innovations in hierarchical zeolite synthesis, Catalysis today, 3-15, 2016.

Sadeghbeigi, R., Fluid Catalytic Cracking Handbook, Unite States of America, Elsevier, 2012.

Bartholomew, C. H. and Farrauto, R. J., Fundamentals of industrial catalytic processes, New Jersey, John Wiley & Sons, Inc, 2006.

Kulprathipanja, S., Zeolites in industrial separation and catalysis, Germany, Wiley-VCH Verlag GmbH & Co., 2010.

Cheng, W., Kim, G., Peters, A., Zhao, X., Rajagopalan, K., Ziebarth, M. and Pereira, J., Environmental fluid catalytic cracking technology, Catalytic reviews, 39-79, 1998.

Bartholomew, C., Mechanism of catalyst deactivation, Applied Catalysis A: General, 212, 17-60, 2001.

Cerqueira, H. S., Caeiro, G., Costa, L. and Ribeiro, F. Ramôa, Deactivation of FCC catalysts, Journal of Molecular Catalysis A: Chemical, 292, 1-13, 2008.

Cuadros, J. F., Melo, D. C., Maciel, R. Filho and Wolf Maciel, M. R., Fluid Catalytic Cracking Environmental Impact: Factorial Design Coupled with Genetic Algorithms to Minimize Carbon Monoxide Pollution, Chemical Engineering Transactions, 26, 243-249, 2012.

Vogt, E. T. C. and Weckhuysen, B. M., Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis, ChemSocRev, 44, 7342-7370, 2015.

Müller, M., Harvey, G. and Prins, R., Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR, Microporous and mesoporous materials, 34, 135-147, 2000.

Agudelo, J. L., Hnsen, E., Giraldo, S. A. and Hoyos, L. J., Influence of steam-calcination and acid leaching treatment on the VGO hydrocraking performance of faujasite zeolite, Fuel processing technology, 133, 89-96, 2015.

Martínez, C., Verboekend D. and Pérez-Ramírez, J., Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking, Catalysis Science & Technology, 3, 972-981, 2013.

Jong, K. P., Zecevic, J., Friedrich, H., Jongh, P. E., Bulut, M., Van Donk, S., Kenmogne, R., Finiels, A., Hulea V. and Fajula, F., Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts, Angew. Chem. Int. Ed., 49, 10074-10078, 2010.

Li, K., Valla, J. and Garcia-Martinez, J., Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking, ChemCatChem, 6, 46-66, 2014.

Giudici, R., Kowenhoven, H. W. and Prins, R., Comparison of nitric and oxalic acid in the dealumination of mordenite, Applied Catalysis A: General, 203, 101-110, 2000.

Etim, U. J., Xu, B., Zhang, Z., Zhong, Z., Bai, P., Qiao, K. and Yan, Z., Improved catalytic cracking performance of USY in the presence of metal contaminants by post-synthesis modification, Fuel, 178, 243-252, 2016.

Ji, D., Liu, H., Wang, X., Liu, H., Gao, X., Xu, C. and Wei, S. Mesostructured Y zeolite from NaY with lowSi/Al by one-step method based on bifunctional surfactant, Materials chemistry and physics, 196, 284-287, 2017.

Qiao, K., Li, X., He, L., Liu, X., Yan, Z., Xing, W., Qin, L., Dai, B. and Zhang, Z., An efficient modification of ultra-stable Y zeolites using citric acid and ammonium fluosilicate, Applied Petrochemstry Research, 4, 373-378, 2014.

Pu, X., Liu, N. W. and Shi, L., Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration, Microporous and mesoporous materials, 201, 17-23, 2015.

Gackowski, M., Tarach, K., Kuterasinski, L., Podobinski, J., Jarczewski, S., Kustrowski, P. and Datka, J., Hierarchical zeolites Y obtained by desilication: Porosity, acidity and catalytic properties, Microporous and mesoporous materials, 263, 282-288, 2018.

Gackowski, M., Kuterasinski, L., Podobinski, J., Sulikowski, B. and Datka, J., IR and NMR studies of hierarchical material obtained by the treatment of zeolite Y by ammonia solution, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 440-446, 2018.

García-Martínez, J., Johnson, M., Valla, J., Li, K. and Ying, J. Y., Mesostructured zeolite Y - high hydrothermal stability and superior FCC catalytic performance, Catalysis Science & Technology, 2, 987-994, 2012.

Tao, H., Kanoh, H. and Kaneko, K., ZSM-5 monolith of uniform mesoporous channels, J. Am. Chem. Soc, 125, 6044-6045, 2003.

Jin, J., Peng, C., Wang, J., Liu, H., Gao, X., Liu, H. and Xu, C., Facile synthesis of mesoporous zeolite Y with improved catalytic performance for heavy oil fluid catalytic cracking, Ind. Eng. Chem. Res., 53, 3406-3411, 2014.

Cejka, J., Van Bekkum, H., Corma, A. and Schueth, F., Introduction to zeolite molecular sieves, Amsterdam, Elsevier, 2007.

Van Aelst, J., Verboekend, D., Philippaerts, A., Nuttens, N., Kurttepeli, M., Gobechiya, E., Haouas, M., Sree, S. P., Denayer, J. F. M., Martens, J. A., Kirschhock, C. E. A., Taulelle, F., Bals, S., Baron, G. V., Pierre A. J. and Bert, F., Catalyst Design by NH4OH Treatment of USY zeolite, Advanced functional materials, 25, 7130-7144, 2015.

Li, W., Zheng, J., Luo, Y. and Da, Z., Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y, Applied Surface Science, 382, 302-308, 2016.

Qin, Z., Shen, B., Yu, Z., Deng, F., Zhao, L., Zhou, S. and Yuan, D.,A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking, Journal of Catalysis, 298, 102-111, 2013.

Verboekend, D., Vilé, G. and Pérez Ramírez, J., Hierarchical Y and USY zeolites designed by post-synthetic strategies, Advanced functional materials, 22, 916-928, 2012.

Kuperkar, K., Abezgauz, L., Prasad, K. and Bahadur, P., Formation and growth of micelles in dilute aqueous CTAB solutions in the presence of NaNO3 and NaClO3, Journal of surfactants and detergents, 13, 293-303, 2010.

Modaressi, A., Sifaoui, H., Grzesiak, B., Solimando, R., Domanska, U. and Rogalski, M., CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conductimetric studies, Colloids and surfaces A: Physicochemical engineering aspects, 296, 104-108, 2007.

ASTM International, ASTM D3906-03: Standart Test Method for Determination of Relative X-ray diffraction intensities of faujasite Type Zeolite containing materials, Unite States of America, 2013.

Zheng, J., Yi, Y., Wang, W., Guo, K., Ma, J. and Li, R., Synthesis of bi-phases composite zeolites MFZ and its hierarchical effects in isopropylbenzene catalytic cracking, Microporous and mesoporous materials, 171, 44-52, 2013.

Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A. and Ruoff, R. S., Carbon-Based supercapacitors produced by activation of graphene, Science, 24, 1537-1541, 2011.

Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck, J. S., Schlenker, J. L., Olson, D. H. y Sheppard, E. W., Effect of surfactant/Silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phses and mechanistic implications, Chemistry of materials, 6, 2317-2326, 1994.

Li, C., Guo, L., Liu, P., Gong, K., Jin, W., Li, L., Zhu, X., Liu, X. and Shen, B., Defects in AHFS-dealuminated Y zeolite: A crucial factor for mesopores formation in the following base treatment procedure, Microporous and mesoporous materials, 255, 242-252, 2018.

Guzmán-Castillo, M. L., Armendáriz-Herrera, H., Pérez-Romo, P., Hernández-Beltrán, F., Ibarra, S., Valente, J. S. y Fripiat, J. J., Y zeolite depolymerization-recrystallization: Simultaneous formation of hierarchical porosity and Na dislodging, Microporous and mesoporous materials, 143, 375-382, 2011.

Li, W., Tu, C., Zheng, J., Luo, Y. and Da, Z., Influence of acid wash on the structural and catalytic properties of the hierarchical zeolite Y, Chemistry select, 5, 934-939, 2016.




DOI: https://doi.org/10.33571/rpolitec.v15n28a8

Enlaces refback

  • No hay ningún enlace refback.

Métricas de artículo

Resumen: 75
HTML (English): 24 PDF (English): 15 XML (English): 24

Revista Politécnica 
ISSN: 1900-2351 
ISSN: 2256-5353 (En línea)
DOI:  10.33571/rpolitec