Plantilla diseñada por Revista Politécnica 2019 -- Archivo solo para intercambio de información con repositorios
Para lectura, se recomienda galeradas HTML y PDF

DISEÑO DE UN CONTROLADOR LQG PARA UN HELICOPTERO DE TRES GRADOS DE LIBERTAD

Gónzalez Acevedo Hernando, Guerrero Gómez Yosman Alexis

Resumen

El artículo presenta el diseño de un controlador lineal cuadrático gaussiano (LQG) para regular los ángulos de cabeceo, elevación y viaje de un prototipo de un helicóptero de tres grados de libertad (3 DOF). El controlador LQG se diseña a partir de un modelo lineal y se ajustan los parámetros del regulador en base a simulaciones realizadas con el modelo no lineal, evaluando la respuesta transitoria del sistema en lazo cerrado para diferentes valores de la señal de referencia, garantizando obtener la mayor variación de los ángulos alrededor del punto de equilibrio. La validación experimental de la estrategia de control se realiza sobre un prototipo construido por los autores, la respuesta transitoria de los datos simulados se compara con los datos experimentales, para los tres grados de libertad del helicóptero, observando que el modelo matemático se ajusta a la dinámica del prototipo y se cumplen las condiciones de diseño.

This paper presents the design of a linear quadratic gaussian (LQG) controller to regulate the pitch, elevation and travel angles of a helicopter with three degrees of freedom (3 DOF). The LQG controller was designed on the basis of a linear model and the regulator parameters were adjusted based on the simulations performed with the non-linear model, evaluating the transient response of the system in the closed loop for different values of the reference signal, guaranteeing obtain the greatest variation of the angles around the equilibrium point. The experimental validation was done using a prototype built by the authors; the transient response of the simulated data was compared against the experimental data, for the three degrees of freedom of the helicopter, observing that the mathematical model adjusts to the dynamic of the prototype and the conditions of design were fulfilled.

References

Ahmet Çağrı Arıcan; Sinan Ozcan; Bedrettin Mahmut Kocagil; Ümit Müfit Güzey; Metin U. Salamci. “Suboptimal control of a 3 dof helicopter with state dependent riccati equations”. XXVI International Conference on Communication and Automation Technologies (ICAT), 2017. DOI: 10.1109/ICAT.2017.8171615

. Liu Hao, Yu Yao, Lu Geng, Zhong Yisheng. “Robust LQR attitude control of 3 DOF helicopter”. Proceedings of the 29th Chinese Control Conference. July 29-31, 2010, Beijing, China. DOI: 10.1109/TIE.2012.2216233

. R. I. Boby, H. Mansor, T. S. Gunawan, S. Khan. “Robust Adaptive LQR Control of Nonlinear System Application to 3-Dof Flight Control System”. Proceedings of the IEEE International Conference on Smart Instrumentation, Measurement and Applications. DOI: 10.1109/ICSIMA.2014.7047443

Ameerul Hakeem Mohd Hairon, Hasmah Mansor, Teddy Surya Gunawan, Sheroz Khan. “Robust Control of Bench-top Helicopter Using Quantitative Feedback Theory”. TELKOMNIKA Indonesian Journal of Electrical Engineering, pp 500 - 507. 2015. DOI: 10.11591/telkomnika.v14i3.7899

Lei Yang, Lidong Zhang, Qing Li. “Design and application of fuzzy sliding mode control in the 3-DOF helicopter”. International Workshop on Intelligent Systems and Applications, ISA 2009. DOI: 10.1109/IWISA.2009.5072806.

Zhichao Liu, Zouhair Choukri, Hongbo Shi. “Control strategy design base on fuzzy logic and LQR for 3 DOF helicopter model”. International Conference on Intelligent Control and Information Processing, ICICIP 2010. DOI: 10.1109/ICICIP.2010.5564250

Kamil Karaman, Yusuf Talha Bekaroğlu, Mehmet Turan Söylemez, Kemal Uçak, Gülay Öke Günel. “Control 3 DOF helicopter via fuzzy PID controller”. 9th International Conference on Electrical and Electronics Engineering, ELECO 2015. DOI: 10.1109/ELECO.2015.7394494

González Hernando, Arizmendi Carlos, García Joan, Angulo Alexander, Herrera Cristian. “Design and Experimental Validation of Adaptive Fuzzy PID Controller for a Three Degrees of Freedom Helicopter”. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). ISBN 978-1-5090-6020-7. 2018

K. Takamuku, M. Ishitobi*, T. Kumada, M. Nishi and S. Kunimatsu. “Redesign Implementation of a Nonlinear Sampled-Data Controller for a 3-DOF Model Helicopter”. SICE Annual Conference 2011

Jerry Ginsberg. “Engineering Dynamics”. Cambridge University Press. 2008. ISBN:13: 9780521883030

Katsuhiko Ogata. “Ingeniería de Control Moderna”. Quinta Edición. Pearson Educación, 2010. ISBN: 9788483226605

Katsuhiko Ogata. “Sistemas de control en tiempo discreto”. Segunda Edición. Pearson Educación, 1995. ISBN: 9688805394

Roland S. Burns. “Advanced Control Engineering”. Butterworth-Heinemann Books. ISBN 978-0-7506-5100-4. 2001. DOI 10.1016/B978-0-7506-5100-4.X5000-1

Shamsul Aizam Zulkifli, Mohd Najib Hussin, Abdul Salam Saad. “MATLAB-Arduino as a low cost microcontroller for 3 phase inverter”. IEEE Student Conference on Research and Development (SCOReD), 2014.

González L. Juan Carlos, León S. Gabriel, Huamani N. Pedro. “Designing of control using Matlab and Arduino for a electrohydraulic system from seismic simulation”. IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2017

Mohit Mehndiratta, Erdal Kayacan, Tufan Kumbasar. “Design and Experimental Validation of Single Input Type-2 Fuzzy PID Controllers as Applied to 3 DOF Helicopter Testbed”. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016. DOI: 10.1109/FUZZ-IEEE.2016.7737879

10.33571/rpolitec.v15n28a5

Enlaces refback

  • No hay ningún enlace refback.

Métricas de artículo

Resumen: 75


Revista Politécnica 
ISSN: 1900-2351 
ISSN: 2256-5353 (En línea)
DOI:  10.33571/rpolitec