Implementación de un algoritmo para la selección de materiales termoplásticos en el entorno nacional

Alejandro Alberto Zuleta, Harveth Gil

Resumen


Una aproximación multi-objetivos fue aplicada al diseño de un software de selección de materiales. El propósito del software es asistir a los ingenieros y diseñadores para que desempeñen una selección práctica en el momento de toma de decisiones para aplicaciones que involucren materiales termoplásticos. El proceso de selección incluye aspectos técnicos del material también como cuestiones ambientales que dan origen a soluciones sostenibles. Se implementó un método con propiedades ponderadas para obtener un ranking de materiales. Para desarrollar el Software se utilizó Visual Basic 6.0 con la ayuda de Excel para realizar un análisis de ciclo de vida racionalizado (ACVR). Se involucraron aspectos de sostenibilidad para obtener la matriz del producto ambientalmente responsable y gráficos de dianas. La principal fuente de datos provino de materiales disponibles localmente lo que permite una selección efectiva. Finalmente, un estudio de caso fue utilizado para ilustrar la aplicación del software. 


Palabras clave


Selección de materiales, materiales poliméricos, software, sostenibilidad

Texto completo:

PDF

Referencias


Ashby, M. F. and Jones, D. R. Engineering Materials 1. An introduction to properties, applications and design, Butterworth-Heinemann, Oxford, 2012.

Brechet, Y., Bassetti, D., Landru, D., Salvo, L. Challenges in materials and process selection. Prog. Mater. Sci.,46, 407–428, 2001.

Djassemi, M. Computer-based approach to material and process selection. J. Manuf. Technol. Manag., 20, 975–988, 2009.

Sapuan, S. A. Knowledge-based system for materials selection in mechanical engineering design. Mater. Des., 22, 687–695, 2001.

Charles, J. Interaction of design, manufacturing method, and material selection. Mater. Sci. Technol., 5, 509–516, 1989.

Ashby, M. Materials Selection in Mechanical Design, Butterworth-Heinemann, Oxford, 1999.

Ashby, M. Materials and the environment: eco-informed material choice, Butterworth-Heinemann, Oxford, 2012.

Online Materials Information Resource - MatWeb [Internet]. [cited 2017 Dec 20]. Available from: http://www.matweb.com/.

Dieter, G. E. Overview of the materials selection process. ASM Handbook, 20, 243–254, 1997.

Bourell, D. L. Decision matrices in materials selection. Mater. Park OH ASM Int., 291–296, 1997.

Sandström, R. An approach to systematic materials selection. Mater. Des., 6, 328–338, 1985.

Dargie, P., Parmeshwar, K., Wilson, W. MAPS-1: computer-aided design system for preliminary material and manufacturing process selection. J. Mech. Des., 104, 126–136, 1982.

Qureshi, M., Ghauri, K., Ali, L., Ahmad, A., Ahmad, R., Waqas, H., Chaudhary, I. A. Computer aided materials selection. J. Qual. Technol. Manag., 53-59, 2012. .

Esawi, A., and Ashby, M. Cost estimates to guide pre-selection of processes. Mater. Des.. 24, 605–616, 2003.[15] Gul, M., Celik, E., Gumus, A. T., Guneri, A. F. A fuzzy logic based PROMETHEE method for material selection problems. J. Basic Appl. Sci., 7, 68-79, 2018.

Celik, E., Gul, M., Aydin, N., Gumus, A. T., Guneri, A. F. A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowl. Based Sys,. 85, 329-341, 2015.

workflow-process-service. Polymer Material Selection | Polymer Advisor Selector Tool | DuPont USA [Internet]. [cited 2017 Dec 20]. Available from: http://www.dupont.com/products-and-services/plastics-polymers-resins/polymer-advisor-thermoplastics.html.

Weaver, P., Ashby, M., Burgess, S., Shibaike, N. Selection of materials to reduce environmental impact: a case study on refrigerator insulation. Mater. Des. 1996;17:11–17.

Bovea MD, Vidal R. Materials selection for sustainable product design: a case study of wood based furniture eco-design. Mater. Des., 25, 111–116, 2004.

Kiker, G. A., Bridges, T. S., Varghese, A., Seager, T. P., Linkov, I. Application of multicriteria decision analysis in environmental decision making. Integr. Environ. Assess. Manag., 1, 95–108, 2005.

Guinee, J. B., Heijungs, R., Huppes, G., . Life cycle assessment: past, present, and future, International Symposium on Life Cycle Assessment and Construcion, Nantes, France, July of 2010.

Wenzel, H., Hauschild, M. Z., Alting, L. Environmental Assessment of Products: Volume 1: Methodology, tools and case studies in product development, Springer Science & Business Media, Copenhagen, 2000.

Fleischer, G., Gerner, K., Kunst, H., . A semi-quantitative method for the impact assessment of emissions within a simplified life cycle assessment. Int. J. Life Cycle Assess., 6, 149–156, 2001.

Graedel, T. E., Graedel, T. E. Streamlined life-cycle assessment. Prentice Hall Upper Saddle River, New Jersey, 1998.

Kutz, M. Mechanical Engineers’ Handbook, Volume 1: Materials and Engineering Mechanics, John Wiley & Sons, 2015.

Graedel, T., Allenby, B., Comrie, P. Matrix approaches to abridged life cycle assessment. Environ. Sci. Technol., 29, 134A–139A, 1995.

Falk, R. H., Lundin, T., Felton, C. The effects of weathering on wood-thermoplastic composites intended for outdoor applications. Proc. Durab. Disaster Mitig. Woodeframe Hous. Madison WI For. Prod. Soc.,175-179, 2000.

Al-Obaidi, K., Ismail, M., Abdul Rahman, A. An innovative roofing system for tropical building interiors: Separating heat from useful visible light. Int J Energy Env., 4, 103–116, 2013.




DOI: https://doi.org/10.33571/rpolitec.v14n27a3

Enlaces refback

  • No hay ningún enlace refback.

Métricas de artículo

Resumen: 93
PDF: 87

Revista Politécnica 
ISSN: 1900-2351 
ISSN: 2256-5353 (En línea)
DOI:  10.33571/rpolitec